6 resultados para WATER RESERVOIR
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Water vapour, despite being a minor constituent in the Martian atmosphere with its precipitable amount of less than 70 pr. μm, attracts considerable attention in the scientific community because of its potential importance for past life on Mars. The partial pressure of water vapour is highly variable because of its seasonal condensation onto the polar caps and exchange with a subsurface reservoir. It is also known to drive photochemical processes: photolysis of water produces H, OH, HO2 and some other odd hydrogen compounds, which in turn destroy ozone. Consequently, the abundance of water vapour is anti-correlated with ozone abundance. The Herschel Space Observatory provides for the first time the possibility to retrieve vertical water profiles in the Martian atmosphere. Herschel will contribute to this topic with its guaranteed-time key project called "Water and related chemistry in the solar system". Observations of Mars by Heterodyne Instrument for the Far Infrared (HIFI) and Photodetector Array Camera and Spectrometer (PACS) onboard Herschel are planned in the frame of the programme. HIFI with its high spectral resolution enables accurate observations of vertically resolved H2O and temperature profiles in the Martian atmosphere. Unlike HIFI, PACS is not capable of resolving the line-shape of molecular lines. However, our present study of PACS observations for the Martian atmosphere shows that the vertical sensitivity of the PACS observations can be improved by using multiple-line observations with different line opacities. We have investigated the possibility of retrieving vertical profiles of temperature and molecular abundances of minor species including H2O in the Martian atmosphere using PACS. In this paper, we report that PACS is able to provide water vapour vertical profiles for the Martian atmosphere and we present the expected spectra for future PACS observations. We also show that the spectral resolution does not allow the retrieval of several studied minor species, such as H2O2, HCl, NO, SO2, etc.
Resumo:
Pumped-storage (PS) systems are used to store electric energy as potential energy for release during peak demand. We investigate the impacts of a planned 1000 MW PS scheme connecting Lago Bianco with Lago di Poschiavo (Switzerland) on temperature and particle mass concentration in both basins. The upper (turbid) basin is a reservoir receiving large amounts of fine particles from the partially glaciated watershed, while the lower basin is a much clearer natural lake. Stratification, temperature and particle concentrations in the two basins were simulated with and without PS for four different hydrological conditions and 27 years of meteorological forcing using the software CE-QUAL-W2. The simulations showed that the PS operations lead to an increase in temperature in both basins during most of the year. The increase is most pronounced (up to 4°C) in the upper hypolimnion of the natural lake toward the end of summer stratification and is partially due to frictional losses in the penstocks, pumps and turbines. The remainder of the warming is from intense coupling to the atmosphere while water resides in the shallower upper reservoir. These impacts are most pronounced during warm and dry years, when the upper reservoir is strongly heated and the effects are least concealed by floods. The exchange of water between the two basins relocates particles from the upper reservoir to the lower lake, where they accumulate during summer in the upper hypolimnion (10 to 20 mg L−1) but also to some extent decrease light availability in the trophic surface layer.
Resumo:
The water spider Argyroneta aquatica (Clerck) is the only spider that spends its whole life under water. Water spiders keep an air bubble around their body for breathing and build under-water air bells, which they use for shelter and raising offspring, digesting and consuming prey, moulting, depositing eggs and sperm, and copulating. It is unclear whether these bells are an important oxygen reservoir for breathing under water, or whether they serve mainly to create water-free space for feeding and reproduction. In this study, we manipulated the composition of the gas inside the bell of female water spiders to test whether they monitor the quality of this gas, and replenish oxygen if required. We exchanged the entire gas in the bell either with pure O(2), pure CO(2), or with ambient air as control, and monitored behavioural responses. The test spiders surfaced and replenished air more often in the CO(2) treatment than in the O(2) treatment, and they increased bell building behaviour. In addition to active oxygen regulation, they monitored and adjusted the bells by adding silk. These results show that water spiders use the air bell as an oxygen reservoir, and that it functions as an external lung, which renders it essential for living under water permanently. A. aquatica is the only animal that collects, transports, and stores air, and monitors its property for breathing, which is an adaptive response of a terrestrial animal to the colonization of an aquatic habitat. J. Exp. Zool. 307A:549-555, 2007. (c) 2007 Wiley-Liss, Inc.
Resumo:
Buruli ulcer (BU), a neglected tropical disease of the skin and subcutaneous tissue, is caused by Mycobacterium ulcerans and is the third most common mycobacterial disease after tuberculosis and leprosy. While there is a strong association of the occurrence of the disease with stagnant or slow flowing water bodies, the exact mode of transmission of BU is not clear. M. ulcerans has emerged from the environmental fish pathogen M. marinum by acquisition of a virulence plasmid encoding the enzymes required for the production of the cytotoxic macrolide toxin mycolactone, which is a key factor in the pathogenesis of BU. Comparative genomic studies have further shown extensive pseudogene formation and downsizing of the M. ulcerans genome, indicative for an adaptation to a more stable ecological niche. This has raised the question whether this pathogen is still present in water-associated environmental reservoirs. Here we show persistence of M. ulcerans specific DNA sequences over a period of more than two years at a water contact location of BU patients in an endemic village of Cameroon. At defined positions in a shallow water hole used by the villagers for washing and bathing, detritus remained consistently positive for M. ulcerans DNA. The observed mean real-time PCR Ct difference of 1.45 between the insertion sequences IS2606 and IS2404 indicated that lineage 3 M. ulcerans, which cause human disease, persisted in this environment after successful treatment of all local patients. Underwater decaying organic matter may therefore represent a reservoir of M. ulcerans for direct infection of skin lesions or vector-associated transmission.
Resumo:
The Al Shomou Silicilyte Member (Athel Formation) in the South Oman Salt Basin shares many of the characteristics of a light, tight-oil (LTO) reservoir: it is a prolifi c source rock mature for light oil, it produces light oil from a very tight matrix and reservoir, and hydraulic fracking technology is required to produce the oil. What is intriguing about the Al Shomou Silicilyte, and different from other LTO reservoirs, is its position related to the Precambrian/Cambrian Boundary (PCB) and the fact that it is a ‘laminated chert‘ rather than a shale. In an integrated diagenetic study we applied microstructural analyses (SEM, BSE) combined with state-of-the-art stable isotope and trace element analysis of the silicilyte matrix and fractures. Fluid inclusion microthermometry was applied to record the salinity and minimum trapping temperatures. The microstructural investigations reveal a fi ne lamination of the silicilyte matrix with a mean lamina thickness of ca. 20 μm consisting of predominantly organic matter-rich and fi nely crystalline quartz-rich layers, respectively. Authigenic, micron-sized idiomorphic quartz crystals are the main matrix components of the silicilyte. Other diagenetic phases are pyrite, apatite, dolomite, magnesite and barite cements. Porosity values based on neutron density logs and core plug data indicate porosity in the silicilyte ranges from less than 2% to almost to 40%. The majority of the pore space in the silicilyte is related to (primary) inter-crystalline pores, with locally important oversized secondary pores. Pore casts of the silica matrix show that pores are extremely irregular in three dimensions, and are generally interconnected by a complex web or meshwork of fi ne elongate pore throats. Mercury injection capillary data are in line with the microstructural observations suggesting two populations of pore throats, with an effective average modal diameter of 0.4 μm. The acquired geochemical data support the interpretation that the primary source of the silica is the ambient seawater rather than hydrothermal or biogenic. A maximum temperature of ca. 45°C for the formation of microcrystalline quartz in the silicilyte is good evidence that the lithifi cation and crystallization of quartz occurred in the fi rst 5 Ma after deposition. Several phases of brittle fracturing and mineralization occurred in response to salt tectonics during burial. The sequences of fracture-fi lling mineral phases (dolomite - layered chalcedony – quartz – apatite - magnesite I+II - barite – halite) indicates a complex fl uid evolution after silicilyte lithifi cation. Primary, all-liquid fl uid inclusions in the fracturefi lling quartz are good evidence of growth beginning at low temperatures, i.e. ≤ 50ºC. Continuous precipitation during increasing temperature and burial is documented by primary two-phase fl uid inclusions in quartz cements that show brines at 50°C and fi rst hydrocarbons at ca. 70°C. The absolute timing of each mineral phase can be constrained based on U-Pb geochronometry, and basin modelling. Secondary fl uid inclusions in quartz, magnesite and barite indicate reactivation of the fracture system after peak burial temperature during the major cooling event, i.e. uplift, between 450 and 310 Ma. A number of fi rst-order trends in porosity and reservoir-quality distribution are observed which are strongly related to the diagenetic and fl uid history of the reservoir: the early in-situ generation of hydrocarbons and overpressure development arrests diagenesis and preserves matrix porosity. Chemical compaction by pressure dissolution in the fl ank areas could be a valid hypothesis to explain the porosity variations in the silicilitye slabs resulting in lower porosity and poorer connectivity on the fl anks of the reservoir. Most of the hydrocarbon storage and production comes from intervals characterized by Amthor et al. 114488 preserved micropores, not hydrocarbon storage in a fracture system. The absence of oil expulsion results in present-day high oil saturations. The main diagenetic modifi cations of the silicilyte occurred and were completed relatively early in its history, i.e. before 300 Ma. An instrumental factor for preserving matrix porosity is the diffi culty for a given slab to evacuate all the fl uids (water and hydrocarbons), or in other words, the very good sealing capacity of the salt embedding the slab.
Resumo:
The study deals with the status and potential of surface water resources in Upper Anseba, Central Highlands of Eritrea, one of the most densely populated regions in Eritrea, including small scale farming and the country's capital city. water demand is increasing rapidly for all uses. The area has no perennial water course and depends very largely on reservoirs for its water supply. The report finds that there are 74 reservoirs in the area, of which 49 are in Upper Anseba. Total reservoir capacity already corresponds to 70% of runoff. the capacity of some of the reservoirs already exceeds annual runoff of their catchment. Recommendations thus include the use of water saving technologies for irrigation; and above all, preparation of a regional master plan for development, including water allocation planning with a mid term perspective.