6 resultados para Visual impairments
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To test the prediction by the Perception and Attention Deficit (PAD) model of complex visual hallucinations that cognitive impairment, specifically in visual attention, is a key risk factor for complex hallucinations in eye disease. METHODS: Two studies of elderly patients with acquired eye disease investigated the relationship between complex visual hallucinations (CVH) and impairments in general cognition and verbal attention (Study 1) and between CVH, selective visual attention and visual object perception (Study 2). The North East Visual Hallucinations Inventory was used to classify CVH. RESULTS: In Study 1, there was no relationship between CVH (n=10/39) and performance on cognitive screening or verbal attention tasks. In Study 2, participants with CVH (n=11/31) showed poorer performance on a modified Stroop task (p<0.05), a novel imagery-based attentional task (p<0.05) and picture (p<0.05) but not silhouette naming (p=0.13) tasks. Performance on these tasks correctly classified 83% of the participants as hallucinators or non-hallucinators. CONCLUSIONS: The results suggest that, consistent with the PAD model, complex visual hallucinations in people with acquired eye disease are associated with visual attention impairment.
Resumo:
Background: Visuoperceptual deficits in dementia are common and can reduce quality of life. Testing of visuoperceptual function is often confounded by impairments in other cognitive domains and motor dysfunction. We aimed to develop, pilot, and test a novel visuocognitive prototype test battery which addressed these issues, suitable for both clinical and functional imaging use. Methods: We recruited 23 participants (14 with dementia, 6 of whom had extrapyramidal motor features, and 9 age-matched controls). The novel Newcastle visual perception prototype battery (NEVIP-B-Prototype) included angle, color, face, motion and form perception tasks, and an adapted response system. It allows for individualized task difficulties. Participants were tested outside and inside the 3T functional magnetic resonance imaging (fMRI) scanner. Functional magnetic resonance imaging data were analyzed using SPM8. Results: All participants successfully completed the task inside and outside the scanner. Functional magnetic resonance imaging analysis showed activation regions corresponding well to the regional specializations of the visual association cortex. In both groups, there was significant activity in the ventral occipital-temporal region in the face and color tasks, whereas the motion task activated the V5 region. In the control group, the angle task activated the occipitoparietal cortex. Patients and controls showed similar levels of activation, except on the angle task for which occipitoparietal activation was lower in patients than controls. Conclusion: Distinct visuoperceptual functions can be tested in patients with dementia and extrapyramidal motor features when tests use individualized thresholds, adapted tasks, and specialized response systems.
Resumo:
Pure alexia is an acquired reading disorder characterized by a disproportionate prolongation of reading time as a function of word length. Although the vast majority of cases reported in the literature show a right-sided visual defect, little is known about the contribution of this low-level visual impairment to their reading difficulties. The present study was aimed at investigating this issue by comparing eye movement patterns during text reading in six patients with pure alexia with those of six patients with hemianopic dyslexia showing similar right-sided visual field defects. We found that the role of the field defect in the reading difficulties of pure alexics was highly deficit-specific. While the amplitude of rightward saccades during text reading seems largely determined by the restricted visual field, other visuo-motor impairments-particularly the pronounced increases in fixation frequency and viewing time as a function of word length-may have little to do with their visual field defect. In addition, subtracting the lesions of the hemianopic dyslexics from those found in pure alexics revealed the largest group differences in posterior parts of the left fusiform gyrus, occipito-temporal sulcus and inferior temporal gyrus. These regions included the coordinate assigned to the centre of the visual word form area in healthy adults, which provides further evidence for a relation between pure alexia and a damaged visual word form area. Finally, we propose a list of three criteria that may improve the differential diagnosis of pure alexia and allow appropriate therapy recommendations.
Resumo:
OBJECTIVE This study aimed to test the prediction from the Perception and Attention Deficit model of complex visual hallucinations (CVH) that impairments in visual attention and perception are key risk factors for complex hallucinations in eye disease and dementia. METHODS Two studies ran concurrently to investigate the relationship between CVH and impairments in perception (picture naming using the Graded Naming Test) and attention (Stroop task plus a novel Imagery task). The studies were in two populations-older patients with dementia (n = 28) and older people with eye disease (n = 50) with a shared control group (n = 37). The same methodology was used in both studies, and the North East Visual Hallucinations Inventory was used to identify CVH. RESULTS A reliable relationship was found for older patients with dementia between impaired perceptual and attentional performance and CVH. A reliable relationship was not found in the population of people with eye disease. CONCLUSIONS The results add to previous research that object perception and attentional deficits are associated with CVH in dementia, but that risk factors for CVH in eye disease are inconsistent, suggesting that dynamic rather than static impairments in attentional processes may be key in this population.
Resumo:
OBJECTIVE To quantify visual discrimination, space-motion, and object-form perception in patients with Parkinson disease dementia (PDD), dementia with Lewy bodies (DLB), and Alzheimer disease (AD). METHODS The authors used a cross-sectional study to compare three demented groups matched for overall dementia severity (PDD: n = 24; DLB: n = 20; AD: n = 23) and two age-, sex-, and education-matched control groups (PD: n = 24, normal controls [NC]: n = 25). RESULTS Visual perception was globally more impaired in PDD than in nondemented controls (NC, PD), but was not different from DLB. Compared to AD, PDD patients tended to perform worse in all perceptual scores. Visual perception of patients with PDD/DLB and visual hallucinations was significantly worse than in patients without hallucinations. CONCLUSIONS Parkinson disease dementia (PDD) is associated with profound visuoperceptual impairments similar to dementia with Lewy bodies (DLB) but different from Alzheimer disease. These findings are consistent with previous neuroimaging studies reporting hypoactivity in cortical areas involved in visual processing in PDD and DLB.
Resumo:
Introduction: In team sports the ability to use peripheral vision is essential to track a number of players and the ball. By using eye-tracking devices it was found that players either use fixations and saccades to process information on the pitch or use smooth pursuit eye movements (SPEM) to keep track of single objects (Schütz, Braun, & Gegenfurtner, 2011). However, it is assumed that peripheral vision can be used best when the gaze is stable while it is unknown whether motion changes can be equally well detected when SPEM are used especially because contrast sensitivity is reduced during SPEM (Schütz, Delipetkose, Braun, Kerzel, & Gegenfurtner, 2007). Therefore, peripheral motion change detection will be examined by contrasting a fixation condition with a SPEM condition. Methods: 13 participants (7 male, 6 female) were presented with a visual display consisting of 15 white and 1 red square. Participants were instructed to follow the red square with their eyes and press a button as soon as a white square begins to move. White square movements occurred either when the red square was still (fixation condition) or moving in a circular manner with 6 °/s (pursuit condition). The to-be-detected white square movements varied in eccentricity (4 °, 8 °, 16 °) and speed (1 °/s, 2 °/s, 4 °/s) while movement time of white squares was constant at 500 ms. 180 events should be detected in total. A Vicon-integrated eye-tracking system and a button press (1000 Hz) was used to control for eye-movements and measure detection rates and response times. Response times (ms) and missed detections (%) were measured as dependent variables and analysed with a 2 (manipulation) x 3 (eccentricity) x 3 (speed) ANOVA with repeated measures on all factors. Results: Significant response time effects were found for manipulation, F(1,12) = 224.31, p < .01, ηp2 = .95, eccentricity, F(2,24) = 56.43; p < .01, ηp2 = .83, and the interaction between the two factors, F(2,24) = 64.43; p < .01, ηp2 = .84. Response times increased as a function of eccentricity for SPEM only and were overall higher than in the fixation condition. Results further showed missed events effects for manipulation, F(1,12) = 37.14; p < .01, ηp2 = .76, eccentricity, F(2,24) = 44.90; p < .01, ηp2 = .79, the interaction between the two factors, F(2,24) = 39.52; p < .01, ηp2 = .77 and the three-way interaction manipulation x eccentricity x speed, F(2,24) = 3.01; p = .03, ηp2 = .20. While less than 2% of events were missed on average in the fixation condition as well as at 4° and 8° eccentricity in the SPEM condition, missed events increased for SPEM at 16 ° eccentricity with significantly more missed events in the 4 °/s speed condition (1 °/s: M = 34.69, SD = 20.52; 2 °/s: M = 33.34, SD = 19.40; 4 °/s: M = 39.67, SD = 19.40). Discussion: It could be shown that using SPEM impairs the ability to detect peripheral motion changes at the far periphery and that fixations not only help to detect these motion changes but also to respond faster. Due to high temporal constraints especially in team sports like soccer or basketball, fast reaction are necessary for successful anticipation and decision making. Thus, it is advised to anchor gaze at a specific location if peripheral changes (e.g. movements of other players) that require a motor response have to be detected. In contrast, SPEM should only be used if a single object, like the ball in cricket or baseball, is necessary for a successful motor response. References: Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11, 1-30. Schütz, A. C., Delipetkose, E., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2007). Temporal contrast sensitivity during smooth pursuit eye movements. Journal of Vision, 7, 1-15.