25 resultados para Visual Attention

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frontal eye field (FEF) is known to be involved in saccade generation and visual attention control. Studies applying covert attentional orienting paradigms have shown that the right FEF is involved in attentional shifts to both the left and the right hemifield. In the current study, we aimed at examining the effects of inhibitory continuous theta burst (cTBS) transcranial magnetic stimulation over the right FEF on overt attentional orienting, as measured by a free visual exploration paradigm. In forty-two healthy subjects, free visual exploration of naturalistic pictures was tested in three conditions: (1) after cTBS over the right FEF; (2) after cTBS over a control site (vertex); and, (3) without any stimulation. The results showed that cTBS over the right FEF-but not cTBS over the vertex-triggered significant changes in the spatial distribution of the cumulative fixation duration. Compared to the group without stimulation and the group with cTBS over the vertex, cTBS over the right FEF decreased cumulative fixation duration in the left and in the right peripheral regions, and increased cumulative fixation duration in the central region. The present study supports the view that the right FEF is involved in the bilateral control of not only covert, but also of overt, peripheral visual attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An impairment of the spatial deployment of visual attention during exploration of static (i.e., motionless) stimuli is a common finding after an acute, right-hemispheric stroke. However, less is known about how these deficits: a) are modulated through naturalistic motion (i.e., without directional, specific spatial features); and, b) evolve in the subacute/chronic post-stroke phase. In the present study, we investigated free visual exploration in three patient groups with subacute/chronic right-hemispheric stroke and in healthy subjects. The first group included patients with left visual neglect and a left visual field defect (VFD), the second patients with a left VFD but no neglect, and the third patients without neglect or VFD. Eye movements were measured in all participants while they freely explored a traffic scene without (static condition) and with (dynamic condition) naturalistic motion, i.e., cars moving from the right or left. In the static condition, all patient groups showed similar deployment of visual exploration (i.e., as measured by the cumulative fixation duration) as compared to healthy subjects, suggesting that recovery processes took place, with normal spatial allocation of attention. However, the more demanding dynamic condition with moving cars elicited different re-distribution patterns of visual attention, quite similar to those typically observed in acute stroke. Neglect patients with VFD showed a significant decrease of visual exploration in the contralesional space, whereas patients with VFD but no neglect showed a significant increase of visual exploration in the contralesional space. No differences, as compared to healthy subjects, were found in patients without neglect or VFD. These results suggest that naturalistic motion, without directional, specific spatial features, may critically influence the spatial distribution of visual attention in subacute/chronic stroke patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE This study aimed to test the prediction from the Perception and Attention Deficit model of complex visual hallucinations (CVH) that impairments in visual attention and perception are key risk factors for complex hallucinations in eye disease and dementia. METHODS Two studies ran concurrently to investigate the relationship between CVH and impairments in perception (picture naming using the Graded Naming Test) and attention (Stroop task plus a novel Imagery task). The studies were in two populations-older patients with dementia (n = 28) and older people with eye disease (n = 50) with a shared control group (n = 37). The same methodology was used in both studies, and the North East Visual Hallucinations Inventory was used to identify CVH. RESULTS A reliable relationship was found for older patients with dementia between impaired perceptual and attentional performance and CVH. A reliable relationship was not found in the population of people with eye disease. CONCLUSIONS The results add to previous research that object perception and attentional deficits are associated with CVH in dementia, but that risk factors for CVH in eye disease are inconsistent, suggesting that dynamic rather than static impairments in attentional processes may be key in this population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: To test the prediction by the Perception and Attention Deficit (PAD) model of complex visual hallucinations that cognitive impairment, specifically in visual attention, is a key risk factor for complex hallucinations in eye disease. METHODS: Two studies of elderly patients with acquired eye disease investigated the relationship between complex visual hallucinations (CVH) and impairments in general cognition and verbal attention (Study 1) and between CVH, selective visual attention and visual object perception (Study 2). The North East Visual Hallucinations Inventory was used to classify CVH. RESULTS: In Study 1, there was no relationship between CVH (n=10/39) and performance on cognitive screening or verbal attention tasks. In Study 2, participants with CVH (n=11/31) showed poorer performance on a modified Stroop task (p<0.05), a novel imagery-based attentional task (p<0.05) and picture (p<0.05) but not silhouette naming (p=0.13) tasks. Performance on these tasks correctly classified 83% of the participants as hallucinators or non-hallucinators. CONCLUSIONS: The results suggest that, consistent with the PAD model, complex visual hallucinations in people with acquired eye disease are associated with visual attention impairment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The role of low-level stimulus-driven control in the guidance of overt visual attention has been difficult to establish because low- and high-level visual content are spatially correlated within natural visual stimuli. Here we show that impairment of parietal cortical areas, either permanently by a lesion or reversibly by repetitive transcranial magnetic stimulation (rTMS), leads to fixation of locations with higher values of low-level features as compared to control subjects or in a no-rTMS condition. Moreover, this unmasking of stimulus-driven control crucially depends on the intrahemispheric balance between top-down and bottom-up cortical areas. This result suggests that although in normal behavior high-level features might exert a strong influence, low-level features do contribute to guide visual selection during the exploration of complex natural stimuli.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on the Attentional Control Theory (ACT; Eysenck et al., 2007), performance efficiency is decreased in high-anxiety situations because worrying thoughts compete for attentional resources. A repeated-measures design (high/low state anxiety and high/low perceptual task demands) was used to test ACT explanations. Complex football situations were displayed to expert and non-expert football players in a decision making task in a controlled laboratory setting. Ratings of state anxiety and pupil diameter measures were used to check anxiety manipulations. Dependent variables were verbal response time and accuracy, mental effort ratings and visual search behavior (e.g., visual search rate). Results confirmed that an anxiety increase, indicated by higher state-anxiety ratings and larger pupil diameters, reduced processing efficiency for both groups (higher response times and mental effort ratings). Moreover, high task demands reduced the ability to shift attention between different locations for the expert group in the high anxiety condition only. Since particularly experts, who were expected to use more top-down strategies to guide visual attention under high perceptual task demands, showed less attentional shifts in the high compared to the low anxiety condition, as predicted by ACT, anxiety seems to impair the shifting function by interrupting the balance between top-down and bottom-up processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the neural mechanisms and the autonomic and cognitive responses associated with visual avoidance behavior in spider phobia. Spider phobic and control participants imagined visiting different forest locations with the possibility of encountering spiders, snakes, or birds (neutral reference category). In each experimental trial, participants saw a picture of a forest location followed by a picture of a spider, snake, or bird, and then rated their personal risk of encountering these animals in this context, as well as their fear. The greater the visual avoidance of spiders that a phobic participant demonstrated (as measured by eye tracking), the higher were her autonomic arousal and neural activity in the amygdala, orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and precuneus at picture onset. Visual avoidance of spiders in phobics also went hand in hand with subsequently reduced cognitive risk of encounters. Control participants, in contrast, displayed a positive relationship between gaze duration toward spiders, on the one hand, and autonomic responding, as well as OFC, ACC, and precuneus activity, on the other hand. In addition, they showed reduced encounter risk estimates when they looked longer at the animal pictures. Our data are consistent with the idea that one reason for phobics to avoid phobic information may be grounded in heightened activity in the fear circuit, which signals potential threat. Because of the absence of alternative efficient regulation strategies, visual avoidance may then function to down-regulate cognitive risk evaluations for threatening information about the phobic stimuli. Control participants, in contrast, may be characterized by a different coping style, whereby paying visual attention to potentially threatening information may help them to actively down-regulate cognitive evaluations of risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When healthy observers make a saccade that is erroneously directed toward a distracter stimulus, they often produce a corrective saccade within 100ms after the end of the primary saccade. Such short inter-saccadic intervals indicate that programming of the secondary saccade has been initiated prior to the execution of the primary saccade and hence that the two saccades have been programmed concurrently. Here we show that concurrent saccade programming is bilaterally impaired in left spatial neglect, a strongly lateralized disorder of visual attention resulting from extensive right cerebral damage. Neglect patients were asked to make saccades to targets presented left or right of fixation while disregarding a distracter presented in the opposite hemifield. We examined those experimental trials on which participants first made a saccade to the distracter, followed by a secondary (corrective) saccade to the target. Compared to healthy and right-hemisphere damaged control participants the proportion of secondary saccades directing gaze to the target instead of bringing it even closer to the distracter was bilaterally reduced in neglect patients. In addition, the characteristic reduction of secondary saccade latency observed in both control groups was absent in neglect patients, whether the secondary saccade was directed to the left or right hemifield. This pattern is consistent with a severe, bilateral impairment of concurrent saccade programming in left spatial neglect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to investigate how oculomotor behaviour depends on the availability of colour information in pictorial stimuli. Forty study participants viewed complex images in colour or grey-scale, while their eye movements were recorded. We found two major effects of colour. First, although colour increases the complexity of an image, fixations on colour images were shorter than on their grey-scale versions. This suggests that colour enhances discriminability and thus affects low-level perceptual processing. Second, colour decreases the similarity of spatial fixation patterns between participants. The role of colour on visual attention seems to be more important than previously assumed, in theoretical as well as methodological terms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies provide promising methodological advances in the use of pupillometry as on-line measurement of cognitive processes and show that visual attention allocation, mind-wandering, mental imagery, and even rhyme expectations can influence the size of the human pupil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The momentary, global functional state of the brain is reflected by its electric field configuration. Cluster analytical approaches consistently extracted four head-surface brain electric field configurations that optimally explain the variance of their changes across time in spontaneous EEG recordings. These four configurations are referred to as EEG microstate classes A, B, C, and D and have been associated with verbal/phonological, visual, attention reorientation, and subjective interoceptive-autonomic processing, respectively. The present study tested these associations via an intra-individual and inter-individual analysis approach. The intra-individual approach tested the effect of task-induced increased modality-specific processing on EEG microstate parameters. The inter-individual approach tested the effect of personal modality-specific parameters on EEG microstate parameters. We obtained multichannel EEG from 61 healthy, right-handed, male students during four eyes-closed conditions: object-visualization, spatial-visualization, verbalization (6 runs each), and resting (7 runs). After each run, we assessed participants' degrees of object-visual, spatial-visual, and verbal thinking using subjective reports. Before and after the recording, we assessed modality-specific cognitive abilities and styles using nine cognitive tests and two questionnaires. The EEG of all participants, conditions, and runs was clustered into four classes of EEG microstates (A, B, C, and D). RMANOVAs, ANOVAs and post-hoc paired t-tests compared microstate parameters between conditions. TANOVAs compared microstate class topographies between conditions. Differences were localized using eLORETA. Pearson correlations assessed interrelationships between personal modality-specific parameters and EEG microstate parameters during no-task resting. As hypothesized, verbal as opposed to visual conditions consistently affected the duration, occurrence, and coverage of microstate classes A and B. Contrary to associations suggested by previous reports, parameters were increased for class A during visualization, and class B during verbalization. In line with previous reports, microstate D parameters were increased during no-task resting compared to the three internal, goal-directed tasks. Topographic differences between conditions concerned particular sub-regions of components of the metabolic default mode network. Modality-specific personal parameters did not consistently correlate with microstate parameters except verbal cognitive style which correlated negatively with microstate class A duration and positively with class C occurrence. This is the first study that aimed to induce EEG microstate class parameter changes based on their hypothesized functional significance. Beyond, the associations of microstate classes A and B with visual and verbal processing, respectively and microstate class D with interoceptive-autonomic processing, our results suggest that a finely-tuned interplay between all four EEG microstate classes is necessary for the continuous formation of visual and verbal thoughts, as well as interoceptive-autonomic processing. Our results point to the possibility that the EEG microstate classes may represent the head-surface measured activity of intra-cortical sources primarily exhibiting inhibitory functions. However, additional studies are needed to verify and elaborate on this hypothesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT: The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing time-on-task leads to fatigue and, as shown by previous research, differentially affects the deployment of visual attention towards the left and the right visual space. In healthy participants, an increasing rightward bias is commonly observed with increasing time-on-task. Yet, it is unclear whether specific mechanisms involved in the spatial deployment of visual attention are differentially affected by increasing time-on-task. The aim of the present study was to investigate whether prolonged time-on-task would affect a specific mechanism of visuo-spatial attentional deployment, namely attentional disengagement, in an asymmetrical fashion. For this purpose, we administered to healthy participants a prolonged gap/overlap saccadic paradigm, with left- and right-sided target stimuli. This oculomotor paradigm allowed to quantify disengagement costs according to the direction of the subsequent attentional shifts, and to evaluate the temporal development of disengagement costs with increasing time-on-task. Our results show that, with increasing time-on-task, participants demonstrated significantly lower disengagement costs for rightward compared to leftward saccades. These effects were specific, since concurring side differences of saccadic latencies were found for overlap trials (requiring attentional disengagement), but not for gap trials (requiring no or less attentional disengagement). Moreover, the results were paralleled by a non-lateralised decrease in saccadic peak velocity with increasing time-on-task, a common finding indicating an increasing level of fatigue. Our findings support the idea that non-spatial attentional aspects, such as fatigue due to increasing time-on-task, can have a substantial influence on the spatial deployment of visual attention, in particular on its disengagement, depending on the direction of the subsequent attentional shift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to investigate whether healthy first-degree relatives of schizophrenia patients show reduced sensitivity performance, higher intra-individual variability (IIV) in reaction time (RT), and a steeper decline in sensitivity over time in a sustained attention task. Healthy first-degree relatives of schizophrenia patients (n=23) and healthy control subjects (n=46) without a family history of schizophrenia performed a demanding version of the Rapid Visual Information Processing task (RVIP). RTs, hits, false alarms, and the sensitivity index A' were assessed. The relatives were significantly less sensitive, tended to have higher IIV in RT, but sustained the impaired level of sensitivity over time. Impaired performance on the RVIP is a possible endophenotype for schizophrenia. Higher IIV in RT, apparently caused by impaired context representations, might result in fluctuations in control and lead to more frequent attentional lapses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topographically organized neurons represent multiple stimuli within complex visual scenes and compete for subsequent processing in higher visual centers. The underlying neural mechanisms of this process have long been elusive. We investigate an experimentally constrained model of a midbrain structure: the optic tectum and the reciprocally connected nucleus isthmi. We show that a recurrent antitopographic inhibition mediates the competitive stimulus selection between distant sensory inputs in this visual pathway. This recurrent antitopographic inhibition is fundamentally different from surround inhibition in that it projects on all locations of its input layer, except to the locus from which it receives input. At a larger scale, the model shows how a focal top-down input from a forebrain region, the arcopallial gaze field, biases the competitive stimulus selection via the combined activation of a local excitation and the recurrent antitopographic inhibition. Our findings reveal circuit mechanisms of competitive stimulus selection and should motivate a search for anatomical implementations of these mechanisms in a range of vertebrate attentional systems.