3 resultados para Virtual compton scattering

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on analyticity, unitarity, and Lorentz invariance the contribution from hadronic vacuum polarization to the anomalous magnetic moment of the muon is directly related to the cross section of e+e− → hadrons. We review the main difficulties that impede such an approach for light-by-light scattering and identify the required ingredients from experiment. Amongst those, the most critical one is the scattering of two virtual photons into meson pairs. We analyze the analytic structure of the process γ*γ* → ππ and show that the usual Muskhelishvili–Omnès representation can be amended in such a way as to remain valid even in the presence of anomalous thresholds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion–nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking corrections both in pion– nucleon and pion–deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion–deuteron system, and discuss the subtleties regarding the definition of the pion–nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon–nucleon scattering. Based on the p±p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a1/2/ g= (170.5±2.0) · 10−3M−1p and a3/2/ g= (−86.5±1.8) · 10−3M−1p .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion–photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for γ⁎γ⁎→ππ.