55 resultados para Vinyl chloride polymers
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.
Resumo:
The aim of this study was to evaluate the anti-erosive effects of different fluoride compounds and one tin compound in the context of the complex pathohistology of dentine erosion, with particular emphasis on the role of the organic portion. Samples were subjected to two experiments including erosive acid attacks (0.05 molar citric acid, pH 2.3; 6 x 2 min/day) and applications (6 x 2 min/day) of the following test solutions: SnCl(2) (815 ppm Sn), NaF (250 ppm F), SnF(2) (250 ppm F, 809 ppm Sn), amine fluoride (AmF, 250 ppm F), AmF/NaF (250 ppm F), and AmF/SnF(2) (250 ppm F, 409 ppm Sn). The demineralised organic fraction was enzymatically removed either at the end of the experiment (experiment 1) or continuously throughout the experiment (experiment 2). Tissue loss was determined profilometrically after 10 experimental days. In experiment 1, the highest erosive tissue loss was found in the control group (erosion only); the AmF- and NaF-containing solutions reduced tissue loss by about 60%, reductions for SnCl(2), AmF/SnF(2), and SnF(2) were 52, 74 and 89%, respectively. In experiment 2, loss values generally were significantly higher, and the differences between the test solutions were much more distinct. Reduction of tissue loss was between 12 and 34% for the AmF- and NaF-containing preparations, and 11, 67 and 78% for SnCl(2), AmF/SnF(2), and SnF(2), respectively. Stannous fluoride-containing solutions revealed promising anti-erosive effects in dentine. The strikingly different outcomes in the two experiments suggest reconsidering current methodologies for investigating anti-erosive strategies in dentine.
Resumo:
Cystic fibrosis (CF), a common lethal inherited disorder defined by ion transport abnormalities, chronic infection, and robust inflammation, is the result of mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a cAMP-activated chloride (Cl-) channel. Macrophages are reported to have impaired activity in CF. Previous studies suggest that Cl- transport is important for macrophage function; therefore, impaired Cl- secretion may underlie CF macrophage dysfunction. To determine whether alterations in Cl- transport exist in CF macrophages, Cl- efflux was measured using N-[ethoxycarbonylmethyl]- 6-methoxy-quinolinium bromide (MQAE), a fluorescent indicator dye. The contribution of CFTR was assessed by calculating Cl- flux in the presence and absence of cftr(inh)-172. The contribution of calcium (Ca(2+))-modulated Cl- pathways was assessed by examining Cl- flux with varied extracellular Ca(2+) concentrations or after treatment with carbachol or thapsigargin, agents that increase intracellular Ca(2+) levels. Our data demonstrate that CFTR contributed to Cl- efflux only in WT macrophages, while Ca(2+)-mediated pathways contributed to Cl- transport in CF and WT macrophages. Furthermore, CF macrophages demonstrated augmented Cl- efflux with increases in extracellular Ca(2+). Taken together, this suggests that Ca(2+)-mediated Cl- pathways are enhanced in CF macrophages compared with WT macrophages.
Resumo:
The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
To assess pain and swelling in the first 7 days after periapical surgery and their relationship with the agent used for bleeding control.
Resumo:
A 7-month-old New Forest foal presented for episodes of recumbency and stiffness with myotonic discharges on electromyography. The observed phenotype resembled congenital myotonia caused by CLCN1 mutations in goats and humans. Mutation of the CLCN1 gene was considered as possible cause and mutation analysis was performed. The affected foal was homozygous for a missense mutation (c.1775A>C, p.D592A) located in a well conserved domain of the CLCN1 gene. The mutation showed a recessive mode of inheritance within the reported pony family. Therefore, this CLCN1 polymorphism is considered to be a possible cause of congenital myotonia.
Resumo:
BACKGROUND: Mutations in the chloride channel gene, CLCNKB, usually cause classic Bartter syndrome (cBS) or a mixed Bartter-Gitelman phenotype in the first years of life. METHODS: We report an adult woman with atypical BS caused by a homozygous missense mutation, A204T, in the CLCNKB gene, which has previously been described as the apparently unique cause of cBS in Spain. RESULTS: The evaluation of this patient revealed an overlap of phenotypic features ranging from severe biochemical and systemic disturbances typical of cBS to scarce symptoms and diagnosis in the adult age typical of Gitelman syndrome. The tubular disease caused a dramatic effect on mental, growth and puberal development leading to low IQ, final short stature and abnormal ovarian function. Furthermore, low serum PTH concentrations with concomitant nephrocalcinosis and normocalcaemia were observed. Both ovarian function and serum PTH levels were normalized after treatment with cyclooxygenase inhibitors. CONCLUSIONS: The present report confirms a weak genotype-phenotype correlation in patients with CLCNKB mutations and supports the founder effect of the A204T mutation in Spain. In our country, the genetic diagnosis of adult patients with hereditary hypokalaemic tubulopathies should include a screening of A204T mutation in the CLCNKB gene.