65 resultados para Vibrational contributions
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Vibrational energy flow and conformational transitions following excitation of the OH stretching mode of the most stable conformer of glycine are studied by classical trajectories. "On the fly" simulations with the PM3 semiempirical electronic structure method for the potential surface are used. Initial conditions are selected to correspond to the v = 1 excitation of the OH stretch. The main findings are: (1) An an equilibrium-like ratio is established between the populations of the 3 lowest-lying conformers after about 10 picoseconds. (2) There is a high probability throughout the 150 ps of the simulations for finding the molecule in geometries far from the equilibrium structures of the lowest-energy conformers. (3) Energy from the initial excited OH (v = 1) stretch flows preferentially to 5 other vibrational modes, including the bending motion of the H atom. (4) RRK theory yields conformational transition rates that deviate substantially from the classical trajectory results. Possible implication of these results for vibrational energy flow and conformational transitions in small biological molecules are discussed.
Resumo:
Background: The relative contributions of different, potential factors to new bone formation in periosteal distraction osteogenesis are unknown. Purpose: The aim of the present study was to assess the influence of original bone and periosteum on bone formation during periosteal distraction osteogenesis in a rat calvarial model by means of histology and histomorphometry. Methods: A total of 48 rats were used for the experiment. The contribution of the periosteum was assessed by either intact or incised periosteum or an occlusive versus a perforated distraction plate. The cortical bone was either left intact or perforated. Animals were divided in eight experimental groups considering the three possible treatment modalities. All animals were subjected to a 7-day latency period, a 10-day distraction period and a 7-day consolidation period. The newly formed bone was analyzed histologically and histomorphometrically. Results: New, mainly woven bone was found in all groups. Differences in the maximum height of new bone were observed and depended on location. Under the distraction plate, statistically significant differences in maximum bone height were found between the group with perforations in both cortical bone and distraction plate and the group without such perforations. Conclusions: If the marrow cavities were not opened, the contribution to new bone formation was dominant from the periosteum. If the bone perforations opened the marrow cavities, a significant contribution to new bone formation originated from the native bone.