4 resultados para Vertical vehicle dynamics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A dynamic deterministic simulation model was developed to assess the impact of different putative control strategies on the seroprevalence of Neospora caninum in female Swiss dairy cattle. The model structure comprised compartments of "susceptible" and "infected" animals (SI-model) and the cattle population was divided into 12 age classes. A reference model (Model 1) was developed to simulate the current (status quo) situation (present seroprevalence in Switzerland 12%), taking into account available demographic and seroprevalence data of Switzerland. Model 1 was modified to represent four putative control strategies: testing and culling of seropositive animals (Model 2), discontinued breeding with offspring from seropositive cows (Model 3), chemotherapeutic treatment of calves from seropositive cows (Model 4), and vaccination of susceptible and infected animals (Model 5). Models 2-4 considered different sub-scenarios with regard to the frequency of diagnostic testing. Multivariable Monte Carlo sensitivity analysis was used to assess the impact of uncertainty in input parameters. A policy of annual testing and culling of all seropositive cattle in the population reduced the seroprevalence effectively and rapidly from 12% to <1% in the first year of simulation. The control strategies with discontinued breeding with offspring from all seropositive cows, chemotherapy of calves and vaccination of all cattle reduced the prevalence more slowly than culling but were still very effective (reduction of prevalence below 2% within 11, 23 and 3 years of simulation, respectively). However, sensitivity analyses revealed that the effectiveness of these strategies depended strongly on the quality of the input parameters used, such as the horizontal and vertical transmission factors, the sensitivity of the diagnostic test and the efficacy of medication and vaccination. Finally, all models confirmed that it was not possible to completely eradicate N. caninum as long as the horizontal transmission process was not interrupted.
Resumo:
Changes in species composition in two 4–ha plots of lowland dipterocarp rainforest at Danum, Sabah, were measured over ten years (1986 to 1996) for trees greater than or equal to 10 cm girth at breast height (gbh). Each included a lower–slope to ridge gradient. The period lay between two drought events of moderate intensity but the forest showed no large lasting responses, suggesting that its species were well adapted to this regime. Mortality and recruitment rates were not unusual in global or regional comparisons. The forest continued to aggrade from its relatively (for Sabah) low basal area in 1986 and, together with the very open upper canopy structure and an abundance of lianas, this suggests a forest in a late stage of recovery from a major disturbance, yet one continually affected by smaller recent setbacks. Mortality and recruitment rates were not related to population size in 1986, but across subplots recruitment was positively correlated with the density and basal area of small trees (10 to <50 cm gbh) forming the dense understorey. Neither rate was related to topography. While species with larger mean gbh had greater relative growth rates (rgr) than smaller ones, subplot mean recruitment rates were correlated with rgr among small trees. Separating understorey species (typically the Euphorbiaceae) from the overstorey (Dipterocarpaceae) showed marked differences in change in mortality with increasing gbh: in the former it increased, in the latter it decreased. Forest processes are centred on this understorey quasi–stratum. The two replicate plots showed a high correspondence in the mortality, recruitment, population changes and growth rates of small trees for the 49 most abundant species in common to both. Overstorey species had higher rgrs than understorey ones, but both showed considerable ranges in mortality and recruitment rates. The supposed trade–off in traits, viz slower rgr, shade tolerance and lower population turnover in the understorey group versus faster potential growth rate, high light responsiveness and high turnover in the overstorey group, was only partly met, as some understorey species were also very dynamic. The forest at Danum, under such a disturbance–recovery regime, can be viewed as having a dynamic equilibrium in functional and structural terms. A second trade–off in shade–tolerance versus drought–tolerance is suggested for among the understorey species. A two–storey (or vertical component) model is proposed where the understorey–overstorey species’ ratio of small stems (currently 2:1) is maintained by a major feedback process. The understorey appears to be an important part of this forest, giving resilience against drought and protecting the overstorey saplings in the long term. This view could be valuable for understanding forest responses to climate change where drought frequency in Borneo is predicted to intensify in the coming decades.