3 resultados para Vero cell
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Monoclonal antibodies (mabs) were generated against whole sonicated Neospora caninum tachyzoites as immunogen. Initial ELISA screening of the reactivity of hybridoma culture supernatants using the same antigen and antigen treated with sodium periodate prior to antibody binding resulted in the identification of 8 supernatants with reactivity against putative carbohydrate epitopes. Following immunoblotting, mab6D12 (IgG1), binding a 52/48-kDa doublet, and mab6C6 (IgM), binding a 190/180-kDa doublet, were selected for further studies. Immunofluorescence of tachyzoite-infected cultures localized the corresponding epitopes not to the surface, but to interior epitopes at the apical part of N. caninum tachyzoites. During in vitro tachyzoite to bradyzoite stage conversion, mab6C6 labeling translocated toward the cyst periphery, while for mab6D12 no changes in localization were noted. Upon extraction of tachyzoites with the nonionic detergent Triton-X-100, the 52-kDa band recognized by mab6D12 was present exclusively in the insoluble, cytoskeletal fraction of both N. caninum and Toxoplasma gondii tachyzoites. Tandem mass spectrometry analysis identified this protein as N. caninum beta tubulin. The 48-kDa band labeled by mab6D12 was a Vero cell protein contamination. The protein(s) reacting with mab6C6 could not be conclusively identified by mass spectrometry. Immunofluorescence consistently failed to label T. gondii tachyzoites, indicating that beta tubulin in T. gondii and N. caninum could be differentially modified or that the reactive epitope in T. gondii is masked. Immunogold TEM of isolated apical cytoskeletal preparations and dual immunofluorescence with antibody to tubulin confirmed that mab6D12 binds to the anterior part of apical complex-associated microtubules. The sodium periodate sensitivity of the beta tubulin associated epitope was confirmed by immunoblotting and ELISA, and treatment of N. caninum cytoskeletal proteins with sialidase prior to mab6D12 labeling resulted in a profound loss of antibody binding, suggesting that mab6D12 reacts with sialylated beta tubulin.
Resumo:
Terminal sialic acid residues on surface-associated glycoconjugates mediate host cell interactions of many pathogens. Addition of sialic acid-rich fetuin enhanced, and the presence of the sialidiase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid reduced, the physical interaction of Neospora caninum tachyzoites and bradyzoites with Vero cell monolayers. Thus, Neospora extracts were subjected to fetuin-agarose affinity chromatography in order to isolate components potentially interacting with sialic acid residues. SDS-PAGE and silver staining of the fetuin binding fraction revealed the presence of a single protein band of approximately 65 kDa, subsequently named NcFBP (Neospora caninum fetuin-binding protein), which was localized at the apical tip of the tachyzoites and was continuously released into the surrounding medium in a temperature-independent manner. NcFBP readily interacted with Vero cells and bound to chondroitin sulfate A and C, and anti-NcFBP antibodies interfered in tachyzoite adhesion to host cell monolayers. In additon, analysis of the fetuin binding fraction by gelatin substrate zymography was performed, and demonstrated the presence of two bands of 96 and 140 kDa exhibiting metalloprotease-activity. The metalloprotease activity readily degraded glycosylated proteins such as fetuin and bovine immunoglobulin G heavy chain, whereas non-glycosylated proteins such as bovine serum albumin and immunoglobulin G light chain were not affected. These findings suggest that the fetuin-binding fraction of Neospora caninum tachyzoites contains components that could be potentially involved in host-parasite interactions.
Resumo:
Nitazoxanide (NTZ) and its deacetylated metabolite tizoxanide (TIZ) exhibit considerable in vitro activity against Besnoitia besnoiti tachyzoites grown in Vero cells. Real-time-PCR was used to assess B. besnoiti tachyzoite adhesion, invasion, and intracellular proliferation in vitro. A number of NTZ-derivatives, including Rm4822 and Rm4803, were generated, in which the thiazole-ring-associated nitro-group was replaced by a bromo-moiety. We here show that replacement of the nitro-group on the thiazole ring with a bromo (as it occurs in Rm4822) does not impair the efficacy of the drug, but methylation of the salicylate ring at the ortho-position in a bromo-derivative (Rm4803) results in complete abrogation of the antiparasitic activity. Treatment of extracellular B. besnoiti tachyzoites with NTZ has an inhibitory effect on host cell invasion, while treatments with TIZ, Rm4822 do not. TEM demonstrates that the effects of Rm4822 treatment upon the parasites are similar to the damage induced by NTZ. This includes increased vacuolization of the parasite cytoplasm, and loss of the structural integrity of the parasitophorous vacuole and its membrane. Thus, Rm4822, due to the absence of a potentially mutagenic nitro-group, may represent an important potential addition to the anti-parasitic arsenal for food animal production, especially in cattle.