9 resultados para Ventilation data
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Postmortem imaging has gained prominence in the field of forensic pathology. Even with experience in this procedure, difficulties arise in evaluating pathologies of the postmortem lung. The effect of postmortem ventilation with applied pressures of 10, 20, 30 and 40mbar was evaluated in 10 corpses using simultaneous postmortem computed tomography (pmCT) scans. Ventilation was performed via a continuous positive airway pressure mask (n=5), an endotracheal tube (n=4) and a laryngeal mask (n=1) using a portable home care ventilator. The lung volumes were measured and evaluated by a segmentation technique based on reconstructed CT data. The resulting changes to the lungs were analyzed. Postmortem ventilation at 40mbar induced a significant (p<0.05) unfolding of the lungs, with a mean volume increase of 1.32l. Small pathologies of the lung such as scarring and pulmonary nodules as well as emphysema were revealed, while inner livores were reduced. Even though lower ventilation pressures resulted in a significant (p<0.05) volume increase, pathologies were best evaluated when a pressure of 40mbar was applied, due to the greater reduction of the inner livores. With the ventilation-induced expansion of the lungs, a decrease in the heart diameter and gaseous distension of the stomach was recognized. In conclusion, postmortem ventilation is a feasible method for improving evaluation of the lungs and detection of small lung pathologies. This is because of the volume increase in the air-filled portions of the lung and reduced appearance of inner livores.
Resumo:
Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study therefore aims to extend a previously reported frequency filtering technique to a spontaneously breathing cohort and assess the regional distributions of ventilation and perfusion and their relationship. Methods Ten healthy adults were measured during a breath hold and while spontaneously breathing in supine, prone, left and right lateral positions. EIT data were analysed with and without filtering at the respiratory and heart rate. Profiles of ventilation, perfusion and ventilation/perfusion related impedance change were generated and regions of ventilation and pulmonary perfusion were identified and compared. Results Analysis of the filtration technique demonstrated its ability to separate the ventilation and cardiac related impedance signals without negative impact. It was, therefore, deemed suitable for use in this spontaneously breathing cohort. Regional distributions of ventilation, perfusion and the combined ΔZV/ΔZQ were calculated along the gravity axis and anatomically in each position. Along the gravity axis, gravity dependence was seen only in the lateral positions in ventilation distribution, with the dependent lung being better ventilated regardless of position. This gravity dependence was not seen in perfusion. When looking anatomically, differences were only apparent in the lateral positions. The lateral position ventilation distributions showed a difference in the left lung, with the right lung maintaining a similar distribution in both lateral positions. This is likely caused by more pronounced anatomical changes in the left lung when changing positions. Conclusions The modified filtration technique was demonstrated to be effective in separating the ventilation and perfusion signals in spontaneously breathing subjects. Gravity dependence was seen only in ventilation distribution in the left lung in lateral positions, suggesting gravity based shifts in anatomical structures. Gravity dependence was not seen in any perfusion distributions.
Resumo:
INTRODUCTION: The objective was to study the effects of a novel lung volume optimization procedure (LVOP) using high-frequency oscillatory ventilation (HFOV) upon gas exchange, the transpulmonary pressure (TPP), and hemodynamics in a porcine model of surfactant depletion. METHODS: With institutional review board approval, the hemodynamics, blood gas analysis, TPP, and pulmonary shunt fraction were obtained in six anesthetized pigs before and after saline lung lavage. Measurements were acquired during pressure-controlled ventilation (PCV) prior to and after lung damage, and during a LVOP with HFOV. The LVOP comprised a recruitment maneuver with a continuous distending pressure (CDP) of 45 mbar for 2.5 minutes, and a stepwise decrease of the CDP (5 mbar every 5 minute) from 45 to 20 mbar. The TPP level was identified during the decrease in CDP, which assured a change of the PaO2/FIO2 ratio < 25% compared with maximum lung recruitment at CDP of 45 mbar (CDP45). Data are presented as the median (25th-75th percentile); differences between measurements are determined by Friedman repeated-measures analysis on ranks and multiple comparisons (Tukey's test). The level of significance was set at P < 0.05. RESULTS: The PaO2/FiO2 ratio increased from 99.1 (56.2-128) Torr at PCV post-lavage to 621 (619.4-660.3) Torr at CDP45 (CDP45) (P < 0.031). The pulmonary shunt fraction decreased from 51.8% (49-55%) at PCV post-lavage to 1.03% (0.4-3%) at CDP45 (P < 0.05). The cardiac output and stroke volume decreased at CDP45 (P < 0.05) compared with PCV, whereas the heart rate, mean arterial pressure, and intrathoracic blood volume remained unchanged. A TPP of 25.5 (17-32) mbar was required to preserve a difference in PaO2/FIO2 ratio < 25% related to CDP45; this TPP was achieved at a CDP of 35 (25-40) mbar. CONCLUSION: This HFOV protocol is easy to perform, and allows a fast determination of an adequate TPP level that preserves oxygenation. Systemic hemodynamics, as a measure of safety, showed no relevant deterioration throughout the procedure.
Resumo:
PURPOSE: We studied the effects of reorganization and changes in the care process, including use of protocols for sedation and weaning from mechanical ventilation, on the use of sedative and analgesic drugs and on length of respiratory support and stay in the intensive care unit (ICU). MATERIALS AND METHODS: Three cohorts of 100 mechanically ventilated ICU patients, admitted in 1999 (baseline), 2000 (implementation I, after a change in ICU organization and in diagnostic and therapeutic approaches), and 2001 (implementation II, after introduction of protocols for weaning from mechanical ventilation and sedation), were studied retrospectively. RESULTS: Simplified Acute Physiology Score II (SAPS II), diagnostic groups, and number of organ failures were similar in all groups. Data are reported as median (interquartile range).Time on mechanical ventilation decreased from 18 (7-41) (baseline) to 12 (7-27) hours (implementation II) (P = .046), an effect which was entirely attributable to noninvasive ventilation, and length of ICU stay decreased in survivors from 37 (21-71) to 25 (19-63) hours (P = .049). The amount of morphine (P = .001) and midazolam (P = .050) decreased, whereas the amount of propofol (P = .052) and fentanyl increased (P = .001). Total Therapeutic Intervention Scoring System-28 (TISS-28) per patient decreased from 137 (99-272) to 113 (87-256) points (P = .009). Intensive care unit mortality was 19% (baseline), 8% (implementation I), and 7% (implementation II) (P = .020). CONCLUSIONS: Changes in organizational and care processes were associated with an altered pattern of sedative and analgesic drug prescription, a decrease in length of (noninvasive) respiratory support and length of stay in survivors, and decreases in resource use as measured by TISS-28 and mortality.
Resumo:
BACKGROUND Adaptive servo-ventilation (ASV) is a well-established treatment of central sleep apnea (CSA) related to congestive heart failure (CHF). Few studies have evaluated the effectiveness and adherence in patients with CSA of other etiologies, and even less is known about treatment of CSA in patients of post ischemic stroke. METHODS A single-centre retrospective analysis of ASV treatment for CSA in post-acute ischemic stroke patients without concomitant CHF was performed. Demographics, clinical data, sleep studies, ventilator settings, and adherence data were evaluated. RESULTS Out of 154 patients on ASV, 15 patients had CSA related to ischemic stroke and were started on ASV a median of 11 months after the acute cerebrovascular event. Thirteen out of the 15 patients were initially treated with continuous positive airway pressure (11/15) and bilevel positive airway pressure (2/15) therapy with unsatisfactory control of CSA. ASV significantly improved AHI (46.7 ± 24.3 vs 8.5 ± 12/h, P = 0.001) and reduced ESS (8.7 ± 5.7 vs 5.6 ± 2.5, P = 0.08) with a mean nightly use of ASV of 5.4 ± 2.4 h at 3 months after the initiation of treatment. Results were maintained at 6 months. CONCLUSION ASV was well tolerated and clinically effective in this group of patients with persistent CSA after ischemic stroke.
Resumo:
Background A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results. Methods In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration. Results Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow. Conclusions We conclude that the presented method is able to determine global respiratory gas flow of the lung in different phases of the respiratory cycle. Additionally, it delivers meaningful insight into regional pulmonary characteristics, i.e. the regional ability of the lung to take up and to release air.
Resumo:
UNLABELLED The purpose of this study was to evaluate the reproducibility of a new software based analysing system for ventilation/perfusion single-photon emission computed tomography/computed tomography (V/P SPECT/CT) in patients with pulmonary emphysema and to compare it to the visual interpretation. PATIENTS, MATERIAL AND METHODS 19 patients (mean age: 68.1 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. Data were analysed by two independent observers in visual interpretation (VI) and by software based analysis system (SBAS). SBAS PMOD version 3.4 (Technologies Ltd, Zurich, Switzerland) was used to assess counts and volume per lung lobe/per lung and to calculate the count density per lung, lobe ratio of counts and ratio of count density. VI was performed using a visual scale to assess the mean counts per lung lobe. Interobserver variability and association for SBAS and VI were analysed using Spearman's rho correlation coefficient. RESULTS Interobserver agreement correlated highly in perfusion (rho: 0.982, 0.957, 0.90, 0.979) and ventilation (rho: 0.972, 0.924, 0.941, 0.936) for count/count density per lobe and ratio of counts/count density in SBAS. Interobserver agreement correlated clearly for perfusion (rho: 0.655) and weakly for ventilation (rho: 0.458) in VI. CONCLUSIONS SBAS provides more reproducible measures than VI for the relative tracer uptake in V/P SPECT/CTs in patients with pulmonary emphysema. However, SBAS has to be improved for routine clinical use.
Resumo:
OBJECTIVE There is controversy regarding the significance of radiological consolidation in the context of COPD exacerbation (eCOPD). While some studies into eCOPD exclude these cases, consolidation is a common feature of eCOPD admissions in real practice. This study aims to address the question of whether consolidation in eCOPD is a distinct clinical phenotype with implications for management decisions and outcomes. PATIENTS AND METHODS The European COPD Audit was carried out in 384 hospitals from 13 European countries between 2010 and 2011 to analyze guideline adherence in eCOPD. In this analysis, admissions were split according to the presence or not of consolidation on the admission chest radiograph. Groups were compared in terms of clinical and epidemiological features, existing treatment, clinical care utilized and mortality. RESULTS 14,111 cases were included comprising 2,714 (19.2%) with consolidation and 11,397 (80.8%) without. The risk of radiographic consolidation increased with age, female gender, cardiovascular diseases, having had two or more admissions in the previous year, and sputum color change. Previous treatment with inhaled steroids was not associated. Patients with radiographic consolidation were significantly more likely to receive antibiotics, oxygen and non-invasive ventilation during the admission and had a lower survival from admission to 90-day follow-up. CONCLUSIONS Patients admitted for COPD exacerbation who have radiological consolidation have a more severe illness course, are treated more intensively by clinicians and have a poorer prognosis. We recommend that these patients be considered a distinct subset in COPD exacerbation.
Resumo:
One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.