2 resultados para Vela perpetua

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-four-hour multichannel intraluminal impedance and pH (MII-pH) esophageal monitoring detects both acid and nonacid gastroesophageal reflux episodes. The MII-pH catheter contains six impedance segments placed 3, 5, 7, 9, 15, and 17 cm above the lower esophageal sphincter (LES). A pH electrode at 5 cm above the LES identifies the type of reflux, i.e. acid or nonacid. Patients with acid and nonacid reflux exhibit typical and atypical symptoms often within 5 min following a reflux episode. The aim of this study is to compare the timing of symptoms after reflux episodes in patients with acid and nonacid reflux. Methods include a review of 70 MII-pH tracings (42 females, mean age 40, range 18-85 years) either on (50 points) or off (20 points) acid suppression therapy. Typical (heartburn, regurgitation) and atypical (cough) symptoms with acid or nonacid reflux episodes detected by impedance were analyzed. Symptoms were considered positive with acid reflux if there was a pH drop to <4, plus an MII detected a reflux episode and with nonacid reflux if pH remained >4 and MII detected a reflux episode. The timing of the symptom after each reflux episode was recorded. Symptom perception occurred significantly sooner after acid versus nonacid reflux (P < 0.05). Acid reflux episodes are more likely to be perceived in the first 2 min following the reflux episode. Patients with acid reflux are likely to perceive symptoms earlier, and symptoms with acid and nonacid reflux may be produced by different mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains.