5 resultados para Vegetation Index

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ongoing rapid and vast land cover and land use transformations in Laos are only documented by punctual local case studies; information on national level is barely available. We explore ways to address this by using MODIS vegetation index times series data to detect medium to large scale transformation on the national level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The urban transition almost always involves wrenching social adjustment as small agricultural communities are forced to adjust rapidly to industrial ways of life. Large-scale in-migration of young people, usually from poor regions, creates enormous demand and expectations for community and social services. One immediate problem planners face in approaching this challenge is how to define, differentiate, and map what is rural, urban, and transitional (i.e., peri-urban). This project established an urban classification for Vietnam by using national census and remote sensing data to identify and map the smallest administrative units for which data are collected as rural, peri-urban, urban, or urban core. We used both natural and human factors in the quantitative model: income from agriculture, land under agriculture and forests, houses with modern sanitation, and the Normalized Difference Vegetation Index. Model results suggest that in 2006, 71% of Vietnam's 10,891 communes were rural, 18% peri-urban, 3% urban, and 4% urban core. Of the communes our model classified as peri-urban, 61% were classified by the Vietnamese government as rural. More than 7% of Vietnam's land area can be classified as peri-urban and approximately 13% of its population (more than 11 million people) lives in peri-urban areas. We identified and mapped three types of peri-urban places: communes in the periphery of large towns and cities; communes along highways; and communes associated with provincial administration or home to industrial, energy, or natural resources projects (e.g., mining). We validated this classification based on ground observations, analyses of multi-temporal night-time lights data, and an examination of road networks. The model provides a method for rapidly assessing the rural–urban nature of places to assist planners in identifying rural areas undergoing rapid change with accompanying needs for investments in building, sanitation, road infrastructure, and government institutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extending phenological records into the past is essential for the understanding of past ecological change and evaluating the effects of climate change on ecosystems. A growing body of historical phenological information is now available for Europe, North America, and Asia. In East Asia, long-term phenological series are still relatively scarce. This study extracted plant phenological observations from old diaries in the period 1834–1962. A spring phenology index (SPI) for the modern period (1963–2009) was defined as the mean flowering time of three shrubs (first flowering of Amygdalus davidiana and Cercis chinensis, 50% of full flowering of Paeonia suffruticosa) according to the data availability. Applying calibrated transfer functions from the modern period to the historical data, we reconstructed a continuous SPI time series across eastern China from 1834 to 2009. In the recent 30 years, the SPI is 2.1–6.3 days earlier than during any other consecutive 30 year period before 1970. A moving linear trend analysis shows that the advancing trend of SPI over the past three decades reaches upward of 4.1 d/decade, which exceeds all previously observed trends in the past 30 year period. In addition, the SPI series correlates significantly with spring (February to April) temperatures in the study area, with an increase in spring temperature of 1°C inducing an earlier SPI by 3.1 days. These shifts of SPI provide important information regarding regional vegetation-climate relationships, and they are helpful to assess long term of climate change impacts on biophysical systems and biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.