14 resultados para Valine

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Isolated GH deficiency (IGHD) is familial in 5-30% of patients. The most frequent form (IGHD-IB) has autosomal recessive inheritance, and it is known that it can be caused by mutations in the GHRH receptor (GHRHR) gene or in the GH gene. However, most forms of IGHD-IB have an unknown genetic cause. In normal subjects, muscarinic cholinergic stimulation causes an increase in pituitary GH release, whereas its blockade has the opposite effect, suggesting that a muscarinic acetylcholine receptor (mAchR) is involved in stimulating GH secretion. Five types of mAchR (M(1)-M(5)) exist. A transgenic mouse in which the function of the M(3) receptor was selectively ablated in the central nervous system has isolated GH deficiency similar to animals with defective GHRH or GHRHR gene. OBJECTIVE: We hypothesized that mAchR mutations may cause a subset of familial IGHD. PATIENTS/METHODS: After confirming the expression of M(1)-M(5) receptor mRNA in human hypothalamus, we analyzed the index cases of 39 families with IGHD-IB for mutations in the genes encoding for the five receptors. Coding sequences for each of the five mAchRs were subjected to direct sequencing. RESULTS: In one family, an affected member was homozygous for a M(3) change in codon 65 that replaces valine with isoleucine (V65I). The V65I receptor was expressed in CHO cells where it had normal ability to transmit methacholine signaling. CONCLUSION: mAchR mutations are absent or rare (less than 2.6%) in familial IGHD type IB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbohydrate-deficient glycoprotein syndrome (CDGS) represents a class of genetic diseases characterized by abnormal N-linked glycosylation. CDGS patients show a large number of glycoprotein abnormalities resulting in dysmorphy, encephalopathy, and other organ disorders. The majority of CDGSs described to date are related to an impaired biosynthesis of dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum. Recently, we identified in four related patients a novel type of CDGS characterized by an accumulation of dolichyl pyrophosphate-linked Man9GlcNAc2. Elaborating on the analogy of this finding with the phenotype of alg5 and alg6 Saccharomyces cerevisiae strains, we have cloned and analyzed the human orthologs to the ALG5 dolichyl phosphate glucosyltransferase and ALG6 dolichyl pyrophosphate Man9GlcNAc2 alpha1,3-glucosyltransferase in four novel CDGS patients. Although ALG5 was not altered in the patients, a C-->T transition was detected in ALG6 cDNA of all four CDGS patients. The mutation cosegregated with the disease in a Mendelian recessive manner. Expression of the human ALG5 and ALG6 cDNA could partially complement the respective S. cerevisiae alg5 and alg6 deficiency. By contrast, the mutant ALG6 cDNA of CDGS patients failed to revert the hypoglycosylation observed in alg6 yeasts, thereby proving a functional relationship between the alanine to valine substitution introduced by the C-->T transition and the CDGS phenotype. The mutation in the ALG6 alpha1,3-glucosyltransferase gene defines an additional type of CDGS, which we propose to refer to as CDGS type-Ic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functions of ribosomes in translation are complex and involve different types of activities critical for decoding the genetic code, linkage of amino acids via amide bonds to form polypeptide chains, as well as the release and proper targeting of the synthesized protein. Non-protein-coding RNAs (ncRNAs) have been recognized to be crucial in establishing regulatory networks.1 However all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. The main goal of this project is to identify potential novel ncRNAs that directly bind and possibly regulate the ribosome during protein biosynthesis. To address this question we applied various stress conditions to the archaeal model organism Haloferax volcanii and deep-sequenced the ribosome-associated small ncRNA interactome. In total we identified 6.250 ncRNA candidates. Significantly, we observed the emersed presence of tRNA-derived fragments (tRFs). These tRFs have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNAs. Here we present evidence that tRFs from H. volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome a 26 residue long fragment originating from the 5’ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production.2 Currently we are investigating the binding site of this tRF on the 30S subunit in more detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules (1). Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii (2). The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-bound non-protein-coding RNA (ncRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production (1). (1) Gebetsberger J. and Polacek N. (2013), RNA Biol. 10:1798-1808 (2) Gebetsberger J. et. al. (2012), Archaea, Article ID 260909

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Short-chain enoyl-CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme that is involved in the oxidation of fatty acids and essential amino acids such as valine. Here, we describe the broad phenotypic spectrum and pathobiochemistry of individuals with autosomal-recessive ECHS1 deficiency. METHODS Using exome sequencing, we identified ten unrelated individuals carrying compound heterozygous or homozygous mutations in ECHS1. Functional investigations in patient-derived fibroblast cell lines included immunoblotting, enzyme activity measurement, and a palmitate loading assay. RESULTS Patients showed a heterogeneous phenotype with disease onset in the first year of life and course ranging from neonatal death to survival into adulthood. The most prominent clinical features were encephalopathy (10/10), deafness (9/9), epilepsy (6/9), optic atrophy (6/10), and cardiomyopathy (4/10). Serum lactate was elevated and brain magnetic resonance imaging showed white matter changes or a Leigh-like pattern resembling disorders of mitochondrial energy metabolism. Analysis of patients' fibroblast cell lines (6/10) provided further evidence for the pathogenicity of the respective mutations by showing reduced ECHS1 protein levels and reduced 2-enoyl-CoA hydratase activity. While serum acylcarnitine profiles were largely normal, in vitro palmitate loading of patient fibroblasts revealed increased butyrylcarnitine, unmasking the functional defect in mitochondrial β-oxidation of short-chain fatty acids. Urinary excretion of 2-methyl-2,3-dihydroxybutyrate - a potential derivative of acryloyl-CoA in the valine catabolic pathway - was significantly increased, indicating impaired valine oxidation. INTERPRETATION In conclusion, we define the phenotypic spectrum of a new syndrome caused by ECHS1 deficiency. We speculate that both the β-oxidation defect and the block in l-valine metabolism, with accumulation of toxic methacrylyl-CoA and acryloyl-CoA, contribute to the disorder that may be amenable to metabolic treatment approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the non-protein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms [1]. Herein included is the prominent example of gene silencing caused by micro RNAs (miRNAs) and small interfering RNAs (siRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of RNAs among the well-studied ncRNAs that target the ribosome itself [2,3]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. Recent studies show the presence of small regulatory RNAs (sRNAs) in archaea which are involved in many biological processes including stress response and metabolic regulation [4]. To date the biological function and the targets of these archaeal sRNAs are only described for a few examples. There are reports of sRNAs binding to the 5’ as well as to the 3’ of mRNAs [5,6]. In addition to these findings, a tRNA derived fragment (tRF) of Valine tRNA was found in a genomic screen of RNAs associated with the ribosome in H. volcanii in our laboratory [3]. This Valine tRF seems to be processed in a stress-dependent manner and showed in vitro binding to the ribosome and inhibited in vitro translation. These results showed that Valine tRF is capable to regulate translation in H. volcanii by targeting the ribosome. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression patterns in response to stress conditions. To investigate the biological relevance of some of the ribosome-associated ncRNA candidates, knock-out and phenotypic characterization studies are done. The genomic knock out of a hypothetical ORF (198nt), where one putative rancRNA candidate (46nt) named IG33 was detected in the library at the beginning of the ORF, showed interesting growth phenotype under specific stress conditions. Furthermore a strain with an introduced start to stop codon mutation in this hypothetical ORF still shows the same phenotype indicating that rather the missing protein than the missing sRNA causes this growth phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-bound non-protein-coding RNA (ncRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-associated non-protein-coding RNA (rancRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [3].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the halophilic archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress-dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-associated non-coding RNA (rancRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [3].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage-gated sodium channels (Nav) are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the Nav. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the Nav by shifting the voltage-dependence of steady state activation toward more negative potentials.