6 resultados para Valenzuela

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multispectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analyzed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.1 ± 0.8 to 3.9 ± 1.5, in the ranges of relative humidity 60–90 and 40–83%, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the γ exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyze the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements on 27 June 2011 were performed over the Southern Iberian Peninsula at Granada EARLINET station, using active and passive remote sensing and airborne and surface in-situ data in order to study the entrainment processes between aerosols in the free troposphere and those in the planetary boundary layer (PBL). To this aim the temporal evolution of the lidar depolarisation, backscatter-related Angström exponent and potential temperature profiles were used in combination with the PBL contribution to the aerosol optical depth (AOD). Our results show that the mineral dust entrainment in the PBL was caused by the convective processes which ‘trapped’ the lofted mineral dust layer, distributing the mineral dust particles within the PBL. The temporal evolution of ground-based in-situ data evidenced the impact of this process at surface level. Finally, the amount of mineral dust in the atmospheric column available to be dispersed into the PBL was estimated by means of POLIPHON (Polarizing Lidar Photometer Networking). The dust mass concentration derived from POLIPHON was compared with the coarse-mode mass concentration retrieved with airborne in-situ measurements. Comparison shows differences below 50 µg/m³ (30% relative difference) indicating a relative good agreement between both techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE In clinical diagnosis, medical image segmentation plays a key role in the analysis of pathological regions. Despite advances in automatic and semi-automatic segmentation techniques, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a lower number of interactions, and a user-independent solution to reduce the time frame between image acquisition and diagnosis. METHODS We present a new interactive method for correcting image segmentations. Our method provides 3D shape corrections through 2D interactions. This approach enables an intuitive and natural corrections of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle and knee joint segmentations from MR images. RESULTS Experimental results show that full segmentation corrections could be performed within an average correction time of 5.5±3.3 minutes and an average of 56.5±33.1 user interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.02 for both anatomies. In addition, for users with different levels of expertise, our method yields a correction time and number of interaction decrease from 38±19.2 minutes to 6.4±4.3 minutes, and 339±157.1 to 67.7±39.6 interactions, respectively.