5 resultados para VISIBLE SPECTRA

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adenosine 5′-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5′-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minorand Arabidopsis thaliana were overexpressed inEscherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins indicated the presence of iron-sulfur centers, whereas flavin was absent. This result was confirmed by quantitative analysis of iron and acid-labile sulfide, suggesting a 4Fe-4S cluster as the cofactor. EPR spectroscopy of freshly purified enzyme showed, however, only a minor signal at g = 2.01. Therefore, Mössbauer spectra of 57Fe-enriched APR were obtained at 4.2 K in magnetic fields of up to 7 tesla, which were assigned to a diamagnetic 4Fe-4S2+ cluster. This cluster was unusual because only three of the iron sites exhibited the same Mössbauer parameters. The fourth iron site gave, because of the bistability of the fit, a significantly smaller isomer shift or larger quadrupole splitting than the other three sites. Thus, plant assimilatory APR represents a novel type of adenosine 5′-phosphosulfate reductase with a 4Fe-4S center as the sole cofactor, which is clearly different from the dissimilatory adenosine 5′-phosphosulfate reductases found in sulfate reducing bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Improved Limb Atmospheric Spectrometer-II (ILAS-II), the Polar Ozone and Aerosol Measurement (POAM III) instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA), the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B), the Airborne Microwave Stratospheric Observing System (AMSOS), the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B), the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH). For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indication of a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. The results of χ2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes errors due to uncertainties in spectrally interfering species and where good coincidences were found, the χ2 values found are in the expected range or even below. This suggests that there is no evidence of systematically underestimated MIPAS random errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-echo-time magnetic resonance spectra of human brain contain broad contributions from macromolecules. As they are a priori of unknown shape and intensity, they pose a problem if one wants to quantitate the overlying spectral features from low-molecular-weight metabolites. On the other hand, the macromolecular contributions may provide relevant clinical information themselves, if properly evaluated. Several methods, based on T(1), T(2), or spectral shape, have previously been suggested to suppress or edit the macromolecule contributions. Here, a method is presented based on a series of saturation recovery scans and that allows for simultaneous recording of the macromolecular baseline and the fully relaxed metabolite spectrum. In comparison to an inversion recovery technique aimed at nulling signals from long-T(1) components, the saturation recovery method is less susceptible to T(1) differences inherent in signals from different metabolites or introduced by pathology. The saturation recovery method was used to quantitate the macromolecular baseline in white and/or gray matter locations of the human brain in 40 subjects. It was found that the content and composition of MR visible macromolecules depends on cerebral location, as well as the age of the investigated subject, while no gender dependence could be found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectra in the visible (VIS) and infrared (IR) region contain a wide variety of information about inorganic and organic substances in sediments. The information from the spectra enables a wide array of applications that allow quantitative, semiquantitative, and qualitative characterization of sediment. Due to the fact that instrument/experimental setups are simple, rapid, and cost-saving and that only small sample quantities are required, the technique has become valuable in paleolimnological and Quaternary science. This article summarizes the theoretical background of VIS and IR spectroscopy, explains the analytical process, introduces statistical tools used for interpretation of spectra, and provides examples of applications in Quaternary science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.