4 resultados para VIPER CALLOSELASMA-RHODOSTOMA
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Aggretin, a potent platelet activator, was isolated from Calloselasma rhodostoma venom, and 30-amino acid N-terminal sequences of both subunits were determined. Aggretin belongs to the heterodimeric snake C-type lectin family and is thought to activate platelets by binding to platelet glycoprotein alpha(2)beta(1). We now show that binding to glycoprotein (GP) Ib is also required. Aggretin-induced platelet activation was inhibited by a monoclonal antibody to GPIb as well as by antibodies to alpha(2)beta(1). Binding of both of these platelet receptors to aggretin was confirmed by affinity chromatography. No binding of other major platelet membrane glycoproteins, in particular GPVI, to aggretin was detected. Aggretin also activates platelets from Fc receptor gamma chain (Fcgamma)-deficient mice to a greater extent than those from normal control mice, showing that it does not use the GPVI/Fcgamma pathway. Platelets from Fcgamma-deficient mice expressed fibrinogen receptors normally in response to collagen, although they did not aggregate, indicating that these platelets may partly compensate via other receptors including alpha(2)beta(1) or GPIb for the lack of the Fcgamma pathway. Signaling by aggretin involves a dose-dependent lag phase followed by rapid tyrosine phosphorylation of a number of proteins. Among these are p72(SYK), p125(FAK), and PLCgamma2, whereas, in comparison with collagen and convulxin, the Fcgamma subunit neither is phosphorylated nor coprecipitates with p72(SYK). This supports an independent, GPIb- and integrin-based pathway for activation of p72(SYK) not involving the Fcgamma receptor.
Resumo:
Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.
Resumo:
Echicetin, a heterodimeric protein from the venom of Echis carinatus, binds to platelet glycoprotein Ib (GPIb) and so inhibits platelet aggregation or agglutination induced by various platelet agonists acting via GPIb. The amino acid sequence of the beta subunit of echicetin has been reported and found to belong to the recently identified snake venom subclass of the C-type lectin protein family. Echicetin alpha and beta subunits were purified. N-terminal sequence analysis provided direct evidence that the protein purified was echicetin. The paper presents the complete amino acid sequence of the alpha subunit and computer models of the alpha and beta subunits. The sequence of alpha echicetin is highly similar to the alpha and beta chains of various heterodimeric and homodimeric C-type lectins. Neither of the fully reduced and alkylated alpha or beta subunits of echicetin inhibited the platelet agglutination induced by von Willebrand factor-ristocetin or alpha-thrombin. Earlier reports about the inhibitory activity of reduced and alkylated echicetin beta subunit might have been due to partial reduction of the protein.
Resumo:
Introduction: The aim of the present work was to verify whether calculating a ratio between clotting times obtained with the sensitive PTT-LA and a less sensitive activated partial thromboplastin time (aPTT)-reagent may represent a valuable aPTT-based screening strategy for lupus anticoagulants (LA). Methods: For the pilot study, plasma samples from normal subjects (n = 15) and from patients with LA (n = 10), therapeutic anticoagulation with vitamin K-antagonists (VKA) (n = 15) or unfractionated heparin (n = 15), coagulation factors deficiency (n = 16), and inhibitory antibodies against factor VIII or IX (n = 11) were studied. For the evaluation study, 1553 consecutive plasma samples from nonanticoagulated patients investigated for LA between January 2005 and December 2007 at our institution were studied. Following screening strategies were employed: Pathromtin-SL (aPTT-SL), PTT-LA (aPTT-LA), ratio aPTT-LA/aPTT-SL (aPTT-ratio), and Russell's viper venom (RVV) based LA-Check. LA positive samples were identified by mixing studies and diluted RVV confirmation test (LA-Check/LA-Sure). Results: Pilot study: All screening strategies had a 100% sensitivity, and the aPTT-ratio reached the highest specificity (82%; 95%CI: 74-90%). Within the evaluation study, following sensitivities for LA screening were observed: aPTT-SL 59.0% (95%CI: 57-61%), aPTT-LA 82.1% (95%CI: 80-84%), aPTT-ratio 92.3% (95%CI: 91-94), and LA-Check 83.3% (95%CI: 82-85%). Conclusion: Calculating a ratio between the LA-sensitive PTT-LA and the less sensitive Pathromtin-SL improves the performance of the PTT-LA itself and represents a simple and sensitive aPTT-based integrated strategy for LA screening.