2 resultados para VINIFERA
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: ;Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast;genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.;Results: ;According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall;evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.;Conclusions: ;The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the;mechanism determining the molecular evolutionary rate at the genomic level.
Resumo:
The international standardisation of national meteorological networks in the late nineteenth century excluded biotic and abiotic observations from the objects to be henceforth published in the yearbooks. Skilled amateurs being in charge of three meteorological stations in Canton Schaffhausen (Switzerland) and their successors managed to continuously publish phenological observations gathered in the station environment alongside with meteorological data in the official gazette of this Canton from 1876 to 1950, i.e. up to the onset of phenological network observations in Switzerland. At least ten observations are available for 51 plant and animal phenological phases. Long series were assembled (N → = 30) for 14 plant phenological observations, among them for the first flowering of snowdrop (Galanthus nivalis), of hazel (Corylus avellana), of horse chestnut (Aesculus hippocastanum), of winter rye (Secale cereale) and of grape vine (Vitis vinifera) as well as the beginning of hay, winter rye and grape harvesting. Only the bare data were published without any metadata. The quality of 10 long series (N →=60) was checked by investigating the biographical and biological background of key observers and submitting their evidence to graphical (meteorological plausibility check of outliers) and statistical verification. The long term observers, mostly schoolteachers and high school professors, had a good knowledge of botany and the quality of their observations – disregarding obvious printing errors – is surprisingly good. A number of long series (seven) was completed with applicable data from the Swiss Phenological Network up to 2011. Besides anthropogenic shifts (beginning of hay and grape harvest) there is a contrast between a global warming-related earlier flowering of snowdrop and hazel and a later occurrence of grape vine flowering.