16 resultados para VEGFR
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The aim of our study was to investigate the phenomenon of intussusceptive angiogenesis with a focus on its molecular regulation by vascular endothelial growth factor receptor (VEGFR)/platelet-derived growth factor receptor β (PDGFRβ) pathways and biological significance for glomerular recovery after acute injury. Glomerular healing by intussusception was examined in a particular setting of Thy1.1 nephritis, where the lysis of mesangial cells results in an initial collapse and successive rebuilding of glomerular capillary structure. Restoration of capillary structure after induction of Thy1.1 nephritis occurred by intussusceptive angiogenesis resulting in i) rapid expansion of the capillary plexus with reinstatement of the glomerular filtration surface and ii) restoration of the archetypical glomerular vascular pattern. Glomerular capillaries of nephritic rats after combined VEGFR2 and PDGFRβ inhibition by PTK787/ZK222584 (PTK/ZK) were tortuous and irregular. However, the onset of intussusceptive angiogenesis was influenced only after long-term PTK/ZK treatment, providing an important insight into differential molecular regulation between sprouting and intussusceptive angiogenesis. PTK/ZK treatment abolished α-smooth muscle actin and tensin expression by injured mesangial cells, impaired glomerular filtration of microspheres, and led to the reduction of glomerular volume and the presence of multiple hemorrhages detectable in the tubular system. Collectively, treatment of nephritic patients with PTK/ZK compound is not recommended.
Resumo:
To maintain a tumour vasculature in proportion of the tumour growth, the endothelial cells proliferate and up-regulate the expression of the VEGF receptor 2 (VEGFR-2), whose expression is restricted to this cell type. This specificity implies that one therapeutically target the tumour endothelium. We investigated the use of immunoliposomes (IL), containing conjugated Fab' fragments of the monoclonal rat anti-VEGFR-2 antibody DC101 (DC101-IL) to cargo doxorubicin to the tumour endothelium. In vitro, fluorescein-labelled IL displayed a 7 fold better binding to VEGFR-2-positive 293T cells in comparison to unspecific liposomes. Balb/C mice were injected subcutaneously with syngeneic hepatocellular carcinoma cells. One set of animals was treated with DC101-IL filled with doxorubicin when the tumours were bigger than 400 mm3. A specific delivery of doxorubicin to endothelial cells of the tumour vessels could be demonstrated by the red fluorescence of doxorubicin with laser scanning microscopy, but neither a delay of tumour growth nor a shrinking of the tumour mass was observed. Yet necrosis in the tumours treated with doxorubicin containing vehicles was larger than in the tumours of the control groups. A second set of animals was treated with DC101-IL filled with doxorubicin when the tumours were smaller than 1 mm3. DC101-IL filled with doxorubicin led to a significant delay in tumour growth up to 7 weeks compared to empty DC101-IL, free doxorubicin, and HEPES/Glucose (HEPES/Glucose vs. DOX-DC101-IL, p = 0.001; unpaired, two-tailed Student's t-test) and to a higher amount of necrotic areas in the tumours (p = 0.053; 1 way ANOVA with 4 groups). These findings suggest that IL designed to bind specifically to VEGFR-2 can be used to deliver doxorubicin to the tumour endothelium and may impair the "angiogenic switch" of the tumours.
Resumo:
Gastrin-releasing peptide (GRP) and GRP receptors (GRPR) play a role in tumor angiogenesis. Recently, GRPR were found to be frequently expressed in the vasculature of a large variety of human cancers. Here, we characterize these GRPR by comparing the vascular GRPR expression and localization in a selection of human cancers with that of an established biological marker of neoangiogenesis, the vascular endothelial growth factor (VEGF) receptor. In vitro quantitative receptor autoradiography was performed in parallel for GRPR and VEGF receptors (VEGFR) in 32 human tumors of various origins, using ¹²⁵I-Tyr-bombesin and ¹²⁵I-VEGF₁₆₅ as radioligands, respectively. Moreover, VEGFR-2 was evaluated immunohistochemically. All tumors expressed GRPR and VEGFR in their vascular system. VEGFR were expressed in the endothelium in the majority of the vessels. GRPR were expressed in a subpopulation of vessels, preferably in their muscular coat. The vessels expressing GRPR were all VEGFR-positive whereas the VEGFR-expressing vessels were not all GRPR-positive. GRPR expressing vessels were found immunohistochemically to co-express VEGFR-2. Remarkably, the density of vascular GRPR was much higher than that of VEGFR. The concomitant expression of GRPR with VEGFR appears to be a frequent phenomenon in many human cancers. The GRPR, localized and expressed in extremely high density in a subgroup of vessels, may function as target for antiangiogenic tumor therapy or angiodestructive targeted radiotherapy with radiolabeled bombesin analogs alone, or preferably together with VEGFR targeted therapy.
Resumo:
Hepatocellular carcinoma (HCC) is a common cause of cancer-related death. Sorafenib prolongs survival of patients with advanced disease and is approved for the systemic treatment of unresectable HCC. It possesses antiangiogenic and antiproliferative properties by way of inhibition of the receptor tyrosine kinases vascular endothelial growth factor receptor 2 (VEGFR-2) and platelet-derived growth factor receptor-beta 1/2 (PDGFR-β) and the kinase RAF. Sorafenib represents a candidate compound for adjuvant therapy in HCC patients. The aim of our study was to investigate whether sorafenib affects liver regeneration. C57BL6 mice received sorafenib orally at 30 mg/kg/day or its vehicle either for 14 days until the day before hepatectomy or starting the day after surgery or both. Animals were sacrificed 24, 72, and 120 hours after hepatectomy. Liver regeneration was calculated as a percent of initial liver weight. Bromodeoxyuridine (BrdU) incorporation and phospho-extracellular signal-regulated kinase (pERK1/2) were determined by immunohistochemistry on liver sections. VEGF-A, PDGF-BB, and hepatocyte growth factor (HGF) levels were measured in liver tissue homogenates. Histological analysis of scar tissue was performed. Treatment stopped 1 day before surgery had no impact on liver regeneration. Continuous sorafenib treatment and treatment started 1 day after surgery had statistically significant effects on liver regeneration at 120 hours compared to vehicle-treated control animals (72% ± 12 versus control 88% ± 15 and 70% ± 13 versus control 86% ± 5 at 120 hours, both P ≤ 0.02). BrdU incorporation showed decreased numbers of positive nuclei in both groups receiving sorafenib after surgery. Phospho-ERK levels were reduced in sorafenib-treated animals. An increase of VEGF-A levels was observed in mice receiving sorafenib. Wound-healing complications were observed in animals receiving sorafenib after surgery and confirmed on histological sections. CONCLUSION: This preclinical study shows that sorafenib did not impact on liver regeneration when ceased before surgery; however, administration after hepatectomy affected late liver regeneration.
Resumo:
Lung cancer is the leading cause of cancer-related mortality worldwide and more than 1 million people annually die in consequence of lung cancer. Although an improvement in lung cancer treatment could be achieved, especially in the last decade, the development of additional therapeutic strategies is urgently required in order to provide improved survival benefit for patients. Lung cancer formation is caused by genetic modifications commonly caused by tobacco smoking. Numerous studies have demonstrated the role of extracellular growth factors in lung cancer cell proliferation, metastasis, and chemoresistance. Mutations and amplifications in molecules related to receptor tyrosine signalling, such as EGFR, ErbB2, c-Met, c-Kit, VEGFR, PI3K, and PTEN are only some of the alterations known to contribute to the development of lung cancer. The phosphoinositide 3-kinase (PI3K) pathway, fundamental for cell development, growth, and survival, is known to be frequently altered in neoplasia, including carcinomas of the lung. Based on the high frequency of alterations, which include mutations and amplifications, leading to over-activation of certain upstream/downstream mediators, targeting components of the PI3K signalling pathway is considered to be a promising therapeutic approach in cancer treatment. In this article we will summarize the current knowledge about the involvement of PI3K signalling in lung cancer and discuss the development of targeted therapies involving PI3K pathway inhibitors.
Resumo:
Bone metastasis and skeletal complications have a devastating impact on the quality of life and are a major cause of morbidity in prostate cancer patients. In addition to established bone-targeted therapies, new drugs such as endothelin A receptor antagonists, MET and VEGFR-2 antagonists or radiopharmaceuticals are in the focus of development. The standard care in prostate cancer patients with bone metastases to prevent skeletal-related events (SRE) are bisphosphonates. Denosumab, a human monoclonal antibody against RANKL, appeared to be superior to zoledronic acid for prevention of SRE and has been shown to prolong bone metastases-free survival. In contrast to zoledronic acid, denosumab clearance is not dependent on kidney function and can be administered subcutaneously. Similar rates of toxicity were observed for both substances; however, long-term data for denosumab are limited.
Resumo:
VE-cadherin is the essential adhesion molecule in endothelial adherens junctions, and the regulation of protein tyrosine phosphorylation is thought to be important for the control of adherens junction integrity. We show here that VE-PTP (vascular endothelial protein tyrosine phosphatase), an endothelial receptor-type phosphatase, co-precipitates with VE-cadherin, but not with beta-catenin, from cell lysates of transfected COS-7 cells and of endothelial cells. Co-precipitation of VE-cadherin and VE-PTP required the most membrane-proximal extracellular domains of each protein. Expression of VE-PTP in triple-transfected COS-7 cells and in CHO cells reversed the tyrosine phosphorylation of VE-cadherin elicited by vascular endothelial growth factor receptor 2 (VEGFR-2). Expression of VE-PTP under an inducible promotor in CHO cells transfected with VE-cadherin and VEGFR-2 increased the VE-cadherin-mediated barrier integrity of a cellular monolayer. Surprisingly, a catalytically inactive mutant form of VE-PTP had the same effect on VE-cadherin phosphorylation and cell layer permeability. Thus, VE-PTP is a transmembrane binding partner of VE-cadherin that associates through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin and cell layer permeability independently of its enzymatic activity.
Resumo:
During development of the vertebrate vascular system essential signals are transduced via protein-tyrosine phosphorylation. Null-mutations of receptor-tyrosine kinase (RTK) genes expressed in endothelial cells (ECs) display early lethal vascular phenotypes. We aimed to identify endothelial protein-tyrosine phosphatases (PTPs), which should have similar importance in EC-biology. A murine receptor-type PTP was identified by a degenerated PCR cloning approach from endothelial cells (VE-PTP). By in situ hybridization this phosphatase was found to be specifically expressed in vascular ECs throughout mouse development. In experiments using GST-fusion proteins, as well as in transient transfections, trapping mutants of VE-PTP co-precipitated with the Angiopoietin receptor Tie-2, but not with the Vascular Endothelial Growth Factor receptor 2 (VEGFR-2/Flk-1). In addition, VE-PTP dephosphorylates Tie-2 but not VEGFR-2. We conclude that VE-PTP is a Tie-2 specific phosphatase expressed in ECs, and VE-PTP phosphatase activity serves to specifically modulate Angiopoietin/Tie-2 function. Based on its potential role as a regulator of blood vessel morphogenesis and maintainance, VE-PTP is a candidate gene for inherited vascular malformations similar to the Tie-2 gene.
Resumo:
Crosstalk between elements of the sinusoidal vasculature, platelets and hepatic parenchymal cells influences regenerative responses to liver injury and/or resection. Such paracrine interactions include hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), IL-6 and small molecules such as serotonin and nucleotides. CD39 (nucleoside triphosphate diphosphohydrolase-1) is the dominant vascular ectonucleotidase expressed on the luminal surface of endothelial cells and modulates extracellular nucleotide signaling. We have previously shown that integrity of P2-receptors, as maintained by CD39, is required for angiogenesis in Matrigel plugs in vivo and that there is synergism between nucleotide P2-receptor- and growth factor-mediated cell proliferation in vitro. We have now explored effects of CD39 on liver regeneration and vascular endothelial growth factor responses in a standard small animal model of partial hepatectomy. The expression of CD39 on liver sinusoidal endothelial cells (LSEC) is substantially boosted during liver regeneration. This transcriptional upregulation precedes maximal sinusoidal endothelial cell proliferation, noted at day 5-8 in C57BL6 wild type mice. In matched mutant mice null for CD39 (n=14), overall survival is decreased to 71% by day 10. Increased lethality occurs as a consequence of extensive LSEC apoptosis, decreased endothelial proliferation and failure of angiogenesis leading to hepatic infarcts and regenerative failure in mutant mice. This aberrant vascular remodeling is associated with biochemical liver injury, elevated serum levels of VEGF (113.9 vs. 65.5pg/ml, p=0.013), and decreased circulating HGF (0.89 vs. 1.43 ng/ml, p=0.001) in mice null for CD39. In agreement with these observations, wild type LSEC but not CD39 null cultures upregulate HGF expression and secretion in response to exogenous VEGF in vitro. CD39 null LSEC cultures show poor proliferation responses and heightened levels of apoptosis when contrasted to wild type LSEC where agonists of P2Y receptors augment cell proliferation in the presence of growth factors. These observations are associated with features of P2Y-desensitization, normal levels of the receptor tyrosine kinase VEGFR-1 (Flt-1) and decreased expression of VEGFR-2 (FLK/KDR) in CD39 null LSEC cultures. We provide evidence that CD39 and extracellular nucleotides impact upon growth factor responses and tyrosine receptor kinases during LSEC proliferation. We propose that CD39 expression by LSEC might co-ordinate angiogenesis-independent liver protection by facilitating VEGF-induced paracrine release of HGF to promote vascular remodeling in liver regeneration.
Resumo:
BACKGROUND AND AIMS: Well-differentiated neuro-endocrine ileal carcinoids are composed of serotonin-producing enterochromaffin (EC) cells. Life expectancy is determined by metastatic spread to the liver because medical treatment options are still very limited. Selective inhibition of angiogenesis or lymphangiogenesis might prevent tumour growth and metastatic spread. We examined the role of the vascular endothelial growth factors (VEGFs) A, B, C, D, and their receptors (VEGFRs) 1, 2, 3 in angiogenesis and lymphangiogenesis of ileal EC cell carcinoids with and without liver metastases. METHODS: The expression of various VEGFs and VEGFRs was determined by quantitative real-time RT-PCR in healthy mucosa, primary tumour, lymph node metastases and liver metastases of 25 patients with ileal EC cell carcinoids. Microvessel density (MVD) was determined by CD-31 staining in primary tumours and lymphatic vessel density (LVD) by LYVE-1 staining. VEGF expression levels, MVD, LVD, and patients' survival time were correlated using logistic regression and Kaplan-Meier survival analysis. RESULTS: VEGF-A was highly expressed with no difference between normal mucosa and tumours. VEGF-B and -D as well as VEGFR-1 and -2 expression levels were significantly increased in the tumours when compared to normal mucosa. Patients with liver metastasis, however, had a significantly lower expression of the factors A, B, and C and the receptors 2 and 3. MVD in primary tumours positively correlated with the expression of VEGF ligands and their receptors, except for VEGF-D. LVD did not correlate with any VEGF ligand or receptor. Interestingly, low expression levels of VEGF-B were associated with poor survival. CONCLUSION: Patients with more aggressive metastatic spreading had relatively decreased expression levels of VEGF ligands and receptors. Thus, anti-angiogenic therapy may not be a suitable target in metastatic ileal EC cell carcinoids.
Resumo:
Recently approved as treatment for astrocytoma, kidney and pancreatic cancer, everolimus acts on tumor cells by inhibiting tumor cell growth and proliferation, as well as by inhibition of angiogenic activity by both direct effects on vascular cell proliferation and indirect effects on growth factor production. The effects of everolimus on early stages of normal vasculogenesis, angiogenesis and lymphangiogenesis are not yet available. We found increased development of intravascular pillars by using area vasculosa of the chick chorioallantoic membrane treated with everolimus. An active lymphangiogenic response was highlighted by the expression of Prospero homeobox protein 1 (Prox1) and podoplanin, together with vascular endothelial growth factor receptor C (Vegf-C) and vascular endothelial growth factor receptor 3 (Vegfr-3) expression on day 4 in the treated group. These findings suggest a potential role of everolimus in the activation of lymphangiogenesis.
Resumo:
BACKGROUND No effective standard treatment exists for patients with radioiodine-refractory, advanced differentiated thyroid carcinoma. We aimed to assess efficacy and safety of vandetanib, a tyrosine kinase inhibitor of RET, VEGFR and EGFR signalling, in this setting. METHODS In this randomised, double-blind, phase 2 trial, we enrolled adults (aged ≥18 years) with locally advanced or metastatic differentiated thyroid carcinoma (papillary, follicular, or poorly differentiated) at 16 European medical centres. Eligible patients were sequentially randomised in a 1:1 ratio with a standard computerised scheme to receive either vandetanib 300 mg per day (vandetanib group) or matched placebo (placebo group), balanced by centre. The primary endpoint was progression-free survival (PFS) in the intention-to-treat population based on investigator assessment. This study is registered with ClinicalTrials.gov, number NCT00537095. FINDINGS Between Sept 28, 2007, and Oct 16, 2008, we randomly allocated 72 patients to the vandetanib group and 73 patients to the placebo group. By data cutoff (Dec 2, 2009), 113 (78%) patients had progressed (52 [72%] patients in the vandetanib group and 61 [84%] in the placebo group) and 40 (28%) had died (19 [26%] patients in the vandetanib group and 21 [29%] in the placebo group). Patients who received vandetanib had longer PFS than did those who received placebo (hazard ratio [HR] 0·63, 60% CI 0·54-0·74; one-sided p=0·008): median PFS was 11·1 months (95% CI 7·7-14·0) for patients in the vandetanib group and 5·9 months (4·0-8·9) for patients in the placebo group. The most common grade 3 or worse adverse events were QTc prolongation (ten [14%] of 73 patients in the vandetanib group vs none in the placebo group), diarrhoea (seven [10%] vs none), asthenia (five [7%] vs three [4%]), and fatigue (four [5%] vs none). Two patients in the vandetanib group and one in the placebo group died from treatment-related serious adverse events (haemorrhage from skin metastases and pneumonia in the vandetanib group and pneumonia in the placebo group). INTERPRETATION Vandetanib is the first targeted drug to show evidence of efficacy in a randomised phase 2 trial in patients with locally advanced or metastatic differentiated thyroid carcinoma. Further investigation of tyrosine-kinase inhibitors in this setting is warranted. FUNDING AstraZeneca.
Resumo:
Because neuronal nitric oxide synthase (nNOS) has a well-known impact on arteriolar blood flow in skeletal muscle, we compared the ultrastructure and the hemodynamics of/in the ensuing capillaries in the extensor digitorum longus (EDL) muscle of male nNOS-knockout (KO) mice and wild-type (WT) littermates. The capillary-to-fiber (C/F) ratio (-9.1%) was lower (P ≤ 0.05) in the nNOS-KO mice than in the WT mice, whereas the mean cross-sectional fiber area (-7.8%) and the capillary density (-3.1%) varied only nonsignificantly (P > 0.05). Morphometrical estimation of the area occupied by the capillaries as well as the volume and surface densities of the subcellular compartments differed nonsignificantly (P > 0.05) between the two strains. Intravital microscopy revealed neither the capillary diameter (+3% in nNOS-KO mice vs. WT mice) nor the mean velocity of red blood cells in EDL muscle (+25% in nNOS-KO mice vs. WT mice) to significantly vary (P > 0.05) between the two strains. The calculated shear stress in the capillaries was likewise nonsignificantly different (3.8 ± 2.2 dyn/cm² in nNOS-KO mice and 2.1 ± 2.2 dyn/cm² in WT mice; P > 0.05). The mRNA levels of vascular endothelial growth factor (VEGF)-A were lower in the EDL muscle of nNOS-KO mice than in the WT littermates (-37%; P ≤ 0.05), whereas mRNA levels of VEGF receptor-2 (VEGFR-2) (-11%), hypoxia inducible factor-1α (+9%), fibroblast growth factor-2 (-14%), and thrombospondin-1 (-10%) differed nonsignificantly (P > 0.05). Our findings support the contention that VEGF-A mRNA expression and C/F-ratio but not the ultrastructure or the hemodynamics of/in capillaries in skeletal muscle at basal conditions depend on the expression of nNOS.
Resumo:
BACKGROUND The addition of bevacizumab to chemotherapy improves progression-free survival in metastatic breast cancer and pathological complete response rates in the neoadjuvant setting. Micrometastases are dependent on angiogenesis, suggesting that patients might benefit from anti-angiogenic strategies in the adjuvant setting. We therefore assessed the addition of bevacizumab to chemotherapy in the adjuvant setting for women with triple-negative breast cancer. METHODS For this open-label, randomised phase 3 trial we recruited patients with centrally confirmed triple-negative operable primary invasive breast cancer from 360 sites in 37 countries. We randomly allocated patients aged 18 years or older (1:1 with block randomisation; stratified by nodal status, chemotherapy [with an anthracycline, taxane, or both], hormone receptor status [negative vs low], and type of surgery) to receive a minimum of four cycles of chemotherapy either alone or with bevacizumab (equivalent of 5 mg/kg every week for 1 year). The primary endpoint was invasive disease-free survival (IDFS). Efficacy analyses were based on the intention-to-treat population, safety analyses were done on all patients who received at least one dose of study drug, and plasma biomarker analyses were done on all treated patients consenting to biomarker analyses and providing a measurable baseline plasma sample. This trial is registered with ClinicalTrials.gov, number NCT00528567. FINDINGS Between Dec 3, 2007, and March 8, 2010, we randomly assigned 1290 patients to receive chemotherapy alone and 1301 to receive bevacizumab plus chemotherapy. Most patients received anthracycline-containing therapy; 1638 (63%) of the 2591 patients had node-negative disease. At the time of analysis of IDFS, median follow-up was 31·5 months (IQR 25·6-36·8) in the chemotherapy-alone group and 32·0 months (27·5-36·9) in the bevacizumab group. At the time of the primary analysis, IDFS events had been reported in 205 patients (16%) in the chemotherapy-alone group and in 188 patients (14%) in the bevacizumab group (hazard ratio [HR] in stratified log-rank analysis 0·87, 95% CI 0·72-1·07; p=0·18). 3-year IDFS was 82·7% (95% CI 80·5-85·0) with chemotherapy alone and 83·7% (81·4-86·0) with bevacizumab and chemotherapy. After 200 deaths, no difference in overall survival was noted between the groups (HR 0·84, 95% CI 0·64-1·12; p=0·23). Exploratory biomarker assessment suggests that patients with high pre-treatment plasma VEGFR-2 might benefit from the addition of bevacizumab (Cox interaction test p=0·029). Use of bevacizumab versus chemotherapy alone was associated with increased incidences of grade 3 or worse hypertension (154 patients [12%] vs eight patients [1%]), severe cardiac events occurring at any point during the 18-month safety reporting period (19 [1%] vs two [<0·5%]), and treatment discontinuation (bevacizumab, chemotherapy, or both; 256 [20%] vs 30 [2%]); we recorded no increase in fatal adverse events with bevacizumab (four [<0·5%] vs three [<0·5%]). INTERPRETATION Bevacizumab cannot be recommended as adjuvant treatment in unselected patients with triple-negative breast cancer. Further follow-up is needed to assess the potential effect of bevacizumab on overall survival.
Resumo:
BACKGROUND Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy. METHODS [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, a radiopeptide that selectively binds to GLP-1R expressed on insulinoma and other neuroendocrine tumor cells, was co-administered with oral vatalanib (an inhibitor of vascular endothelial growth factor receptors (VEGFR)) or imatinib (a c-kit/PDGFR inhibitor). The control groups included single-agent kinase inhibitor treatments and [Lys40(Ahx-DTPA-natIn)NH2]-exendin-4 monotherapy. For biodistribution, Rip1Tag2 mice were pre-treated with oral vatalanib or imatinib for 0, 3, 5, or 7 days at a dose of 100 mg/kg. Subsequently, [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 was administered i.v., and the biodistribution was assessed after 4 h. For therapy, the mice were injected with 1.1 MBq [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and treated with vatalanib or imatinib 100 mg/kg orally for another 7 days. Tumor volume, tumor cell apoptosis and proliferation, and microvessel density were quantified. RESULTS Combination of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and vatalanib was significantly more effective than single treatments (p < 0.05) and reduced the tumor volume by 97% in the absence of organ damage. The pre-treatment of mice with vatalanib led to a reduction in the tumor uptake of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, indicating that concomitant administration of vatalanib and the radiopeptide was the best approach. Imatinib did not show a synergistic effect with [Lys40(Ahx-DTPA-111In)NH2]-exendin-4. CONCLUSION The combination of 1.1 MBq of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 with 100 mg/kg vatalanib had the same effect on a neuroendocrine tumor as the injection of 28 MBq of the radiopeptide alone but without any apparent side effects, such as radiation damage of the kidneys.