51 resultados para VECTOR SPACE MODEL
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Asynchronous level crossing sampling analog-to-digital converters (ADCs) are known to be more energy efficient and produce fewer samples than their equidistantly sampling counterparts. However, as the required threshold voltage is lowered, the number of samples and, in turn, the data rate and the energy consumed by the overall system increases. In this paper, we present a cubic Hermitian vector-based technique for online compression of asynchronously sampled electrocardiogram signals. The proposed method is computationally efficient data compression. The algorithm has complexity O(n), thus well suited for asynchronous ADCs. Our algorithm requires no data buffering, maintaining the energy advantage of asynchronous ADCs. The proposed method of compression has a compression ratio of up to 90% with achievable percentage root-mean-square difference ratios as a low as 0.97. The algorithm preserves the superior feature-to-feature timing accuracy of asynchronously sampled signals. These advantages are achieved in a computationally efficient manner since algorithm boundary parameters for the signals are extracted a priori.
Resumo:
Software visualizations can provide a concise overview of a complex software system. Unfortunately, as software has no physical shape, there is no `natural' mapping of software to a two-dimensional space. As a consequence most visualizations tend to use a layout in which position and distance have no meaning, and consequently layout typically diverges from one visualization to another. We propose an approach to consistent layout for software visualization, called Software Cartography, in which the position of a software artifact reflects its vocabulary, and distance corresponds to similarity of vocabulary. We use Latent Semantic Indexing (LSI) to map software artifacts to a vector space, and then use Multidimensional Scaling (MDS) to map this vector space down to two dimensions. The resulting consistent layout allows us to develop a variety of thematic software maps that express very different aspects of software while making it easy to compare them. The approach is especially suitable for comparing views of evolving software, as the vocabulary of software artifacts tends to be stable over time. We present a prototype implementation of Software Cartography, and illustrate its use with practical examples from numerous open-source case studies.
Resumo:
Software visualizations can provide a concise overview of a complex software system. Unfortunately, since software has no physical shape, there is no “natural“ mapping of software to a two-dimensional space. As a consequence most visualizations tend to use a layout in which position and distance have no meaning, and consequently layout typical diverges from one visualization to another. We propose a consistent layout for software maps in which the position of a software artifact reflects its \emph{vocabulary}, and distance corresponds to similarity of vocabulary. We use Latent Semantic Indexing (LSI) to map software artifacts to a vector space, and then use Multidimensional Scaling (MDS) to map this vector space down to two dimensions. The resulting consistent layout allows us to develop a variety of thematic software maps that express very different aspects of software while making it easy to compare them. The approach is especially suitable for comparing views of evolving software, since the vocabulary of software artifacts tends to be stable over time.