4 resultados para Urethane

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The striatum, the major input nucleus of the basal ganglia, is numerically dominated by a single class of principal neurons, the GABAergic spiny projection neuron (SPN) that has been extensively studied both in vitro and in vivo. Much less is known about the sparsely distributed interneurons, principally the cholinergic interneuron (CIN) and the GABAergic fast-spiking interneuron (FSI). Here, we summarize results from two recent studies on these interneurons where we used in vivo intracellular recording techniques in urethane-anaesthetized rats (Schulz et al., J Neurosci 31[31], 2011; J Physiol, in press). Interneurons were identified by their characteristic responses to intracellular current steps and spike waveforms. Spontaneous spiking contained a high proportion (~45%) of short inter-spike intervals (ISI) of <30 ms in FSIs, but virtually none in CINs. Spiking patterns in CINs covered a broad spectrum ranging from regular tonic spiking to phasic activity despite very similar unimodal membrane potential distributions across neurons. In general, phasic spiking activity occurred in phase with the slow ECoG waves, whereas CINs exhibiting tonic regular spiking were little affected by afferent network activity. In contrast, FSIs exhibited transitions between Down and Up states very similar to SPNs. Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). Cortical-evoked inputs had faster dynamics in FSIs than SPNs and the membrane potential preceding spontaneous spike discharge exhibited short and steep trajectories, suggesting that fast input components controlled spike output in FSIs. Intrinsic resonance mechanisms may have further enhanced the sensitivity of FSIs to fast oscillatory inputs. Induction of an activated ECoG state by local ejection of bicuculline into the superior colliculus, resulted in increased spike frequency in both interneuron classes without changing the overall distribution of ISIs. This manipulation also made CINs responsive to a light flashed into the contralateral eye. Typically, the response consisted of an excitation at short latency followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. These results highlight the differential sensitivity of striatal interneurons to afferent synaptic signals and support a model where CINs modulate the striatal network in response to salient sensory bottom-up signals, while FSIs serve gating of top-down signals from the cortex during action selection and reward-related learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the role of fever as a host defense in experimental pneumococcal meningitis in rabbits. Twelve hours after intracisternal inoculation of an encapsulated type 3 Streptococcus pneumoniae strain, body temperature was manipulated by using two different anesthetic drugs: pentobarbital, which did not affect temperature, and urethane, which mitigated the febrile response to infection. Growth rates of pneumococci in cerebrospinal fluid were dramatically influenced by modification of the febrile response. Rabbits whose fever was not suppressed had mean bacterial doubling times of 2.76 +/- 1.43 h. Animals with a blunted febrile response had a significantly faster mean bacterial growth rate (doubling time = 1.10 +/- 0.27 h; P less than 0.02). When the antipyretic effect of urethane was counteracted by raising the ambient temperature, animals also showed a marked reduction in pneumococcal growth rates. In vitro, the pneumococci grew well at 37 degrees C in Trypticase soy broth (doubling time = 0.61 +/- 0.05 h) and in pooled rabbit cerebrospinal fluid (doubling time = 0.85 +/- 0.07 h). However, at 41 degrees C neither medium supported growth. Thus, body temperature appears to be a critical determinant of pneumococcal growth rates in experimental meningitis, and fever could be a host defense in this disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To determine whether particulate debris is present in periprosthetic tissue from revised Dynesys(®) devices, and if present, elicits a biological tissue reaction. METHODS Five Dynesys(®) dynamic stabilization systems consisting of pedicle screws (Ti alloy), polycarbonate-urethane (PCU) spacers and a polyethylene-terephthalate (PET) cord were explanted for pain and screw loosening after a mean of 2.86 years (1.9-5.3 years). Optical microscopy and scanning electron microscopy were used to evaluate wear, deformation and surface damage, and attenuated total reflectance Fourier transform infrared spectroscopy to assess surface chemical composition of the spacers. Periprosthetic tissue morphology and wear debris were determined using light microscopy, and PCU and PET wear debris by polarized light microscopy. RESULTS All implants had surface damage on the PCU spacers consistent with scratches and plastic deformation; 3 of 5 exhibited abrasive wear zones. In addition to fraying of the outer fibers of the PET cords in five implants, one case also evidenced cord fracture. The pedicle screws were unremarkable. Patient periprosthetic tissues around the three implants with visible PCU damage contained wear debris and a corresponding macrophage infiltration. For the patient revised for cord fracture, the tissues also contained large wear particles (>10 μm) and giant cells. Tissues from the other two patients showed comparable morphologies consisting of dense fibrous tissue with no inflammation or wear debris. CONCLUSIONS This is the first study to evaluate wear accumulation and local tissue responses for explanted Dynesys(®) devices. Polymer wear debris and an associated foreign-body macrophage response were observed in three of five cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recurrent intervertebral disc (IVD) herniation and degenerative disc disease have been identified as the most important factors contributing to persistent pain and disability after surgical discectomy. An annulus fibrosus (AF) closure device that provides immediate closure of the AF rupture, restores disc height, reduces further disc degeneration and enhances self-repair capacities is an unmet clinical need. In this study, a poly(trimethylene carbonate) (PTMC) scaffold seeded with human bone marrow derived mesenchymal stromal cells (MSCs) and covered with a poly(ester-urethane) (PU) membrane was assessed for AF rupture repair in a bovine organ culture annulotomy model under dynamic load for 14 days. PTMC scaffolds combined with the sutured PU membrane restored disc height of annulotomized discs and prevented herniation of nucleus pulposus (NP) tissue. Implanted MSCs showed an up-regulated gene expression of type V collagen, a potential AF marker, indicating in situ differentiation capability. Furthermore, MSCs delivered within PTMC scaffolds induced an up-regulation of anabolic gene expression and down-regulation of catabolic gene expression in adjacent native disc tissue. In conclusion, the combined biomaterial and cellular approach has the potential to hinder herniation of NP tissue, stabilize disc height, and positively modulate cell phenotype of native disc tissue.