2 resultados para Urban streets networks
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper addresses an investigation with machine learning (ML) classification techniques to assist in the problem of flash flood now casting. We have been attempting to build a Wireless Sensor Network (WSN) to collect measurements from a river located in an urban area. The machine learning classification methods were investigated with the aim of allowing flash flood now casting, which in turn allows the WSN to give alerts to the local population. We have evaluated several types of ML taking account of the different now casting stages (i.e. Number of future time steps to forecast). We have also evaluated different data representation to be used as input of the ML techniques. The results show that different data representation can lead to results significantly better for different stages of now casting.
Resumo:
The urban transition almost always involves wrenching social adjustment as small agricultural communities are forced to adjust rapidly to industrial ways of life. Large-scale in-migration of young people, usually from poor regions, creates enormous demand and expectations for community and social services. One immediate problem planners face in approaching this challenge is how to define, differentiate, and map what is rural, urban, and transitional (i.e., peri-urban). This project established an urban classification for Vietnam by using national census and remote sensing data to identify and map the smallest administrative units for which data are collected as rural, peri-urban, urban, or urban core. We used both natural and human factors in the quantitative model: income from agriculture, land under agriculture and forests, houses with modern sanitation, and the Normalized Difference Vegetation Index. Model results suggest that in 2006, 71% of Vietnam's 10,891 communes were rural, 18% peri-urban, 3% urban, and 4% urban core. Of the communes our model classified as peri-urban, 61% were classified by the Vietnamese government as rural. More than 7% of Vietnam's land area can be classified as peri-urban and approximately 13% of its population (more than 11 million people) lives in peri-urban areas. We identified and mapped three types of peri-urban places: communes in the periphery of large towns and cities; communes along highways; and communes associated with provincial administration or home to industrial, energy, or natural resources projects (e.g., mining). We validated this classification based on ground observations, analyses of multi-temporal night-time lights data, and an examination of road networks. The model provides a method for rapidly assessing the rural–urban nature of places to assist planners in identifying rural areas undergoing rapid change with accompanying needs for investments in building, sanitation, road infrastructure, and government institutions.