61 resultados para Unity,Mixed Reality,Extended Reality,Augmented Reality,Virtual Reality,Desgin pattern
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Mode of inheritance of equine recurrent airway obstruction (RAO) is unknown. HYPOTHESIS: Major genes are responsible for RAO. ANIMALS: Direct offspring of 2 RAO-affected Warmblood stallions (n = 197; n = 163) and a representative sample of Swiss Warmbloods (n = 401). METHODS: One environmental and 4 genetic models (general, mixed inheritance, major gene, and polygene) were tested for Horse Owner Assessed Respiratory Signs Index (1-4, unaffected to severely affected) by segregation analyses of the 2 half-sib sire families, both combined and separately, using prevalences estimated in a representative sample. RESULTS: In all data sets the mixed inheritance model was most likely to explain the pattern of inheritance. In all 3 datasets the mixed inheritance model did not differ significantly from the general model (P= .62, P= 1.00, and P= .27) but was always better than the major gene model (P < .01) and the polygene model (P < .01). The frequency of the deleterious allele differed considerably between the 2 sire families (P= .23 and P= .06). In both sire families the displacement was large (t= 17.52 and t= 12.24) and the heritability extremely large (h(2)= 1). CONCLUSIONS AND CLINICAL RELEVANCE: Segregation analyses clearly reveal the presence of a major gene playing a role in RAO. In 1 family, the mode of inheritance was autosomal dominant, whereas in the other family it was autosomal recessive. Although the expression of RAO is influenced by exposure to hay, these findings suggest a strong, complex genetic background for RAO.
Resumo:
Methodological evaluation of the proteomic analysis of cardiovascular-tissue material has been performed with a special emphasis on establishing examinations that allow reliable quantitative analysis of silver-stained readouts. Reliability, reproducibility, robustness and linearity were addressed and clarified. In addition, several types of normalization procedures were evaluated and new approaches are proposed. It has been found that the silver-stained readout offers a convenient approach for quantitation if a linear range for gel loading is defined. In addition, a broad range of a 10-fold input (loading 20-200 microg per gel) fulfills the linearity criteria, although at the lowest input (20 microg) a portion of protein species will remain undetected. The method is reliable and reproducible within a range of 65-200 microg input. The normalization procedure using the sum of all spot intensities from a silver-stained 2D pattern has been shown to be less reliable than other approaches, namely, normalization through median or through involvement of interquartile range. A special refinement of the normalization through virtual segmentation of pattern, and calculation of normalization factor for each stratum provides highly satisfactory results. The presented results not only provide evidence for the usefulness of silver-stained gels for quantitative evaluation, but they are directly applicable to the research endeavor of monitoring alterations in cardiovascular pathophysiology.
Resumo:
Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.
Resumo:
PURPOSE: The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. METHODS AND MATERIALS: The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. RESULTS: In a first clinical study, we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). CONCLUSIONS: The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.
Resumo:
During endoscopic surgery, it is difficult to ascertain the anatomical landmarks once the anatomy is fiddled with or if the operating area is filled with blood. An augmented reality system will enhance the endoscopic view and further enable surgeons to view hidden critical structures or the results of preoperative planning.
Resumo:
Three-dimensional (3D) ultrasound volume acquisition, analysis and display of fetal structures have enhanced their visualization and greatly improved the general understanding of their anatomy and pathology. The dynamic display of volume data generally depends on proprietary software, usually supplied with the ultrasound system, and on the operator's ability to maneuver the dataset digitally. We have used relatively simple tools and an established storage, display and manipulation format to generate non-linear virtual reality object movies of prenatal images (including moving sequences and 3D-rendered views) that can be navigated easily and interactively on any current computer. This approach permits a viewing or learning experience that is superior to watching a linear movie passively.