3 resultados para Uniparental Disomy

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Postnatally ascertained trisomy 16 mosaicism is a rare diagnosis, with only three reported cases to date with no defined clinical phenotype. Trisomy 16 mosaicism diagnosed prenatally is common and associated with variable pregnancy outcomes ranging from stillbirth with multiple congenital abnormalities to an apparently normal newborn, making the genetic counseling very challenging. It is not clear whether uniparental disomy (UPD) 16 contributes to the phenotype, although it has been suggested that maternal UPD 16 affects the rate of intra-uterine growth retardation (IUGR) and congenital anomalies. We report on two further cases of trisomy 16 mosaicism confined to fibroblasts diagnosed postnatally. Patient 1 presented at birth with severe hypospadias, unilateral postaxial polydactyly, and different hair color with midline demarcation. His growth and development were normal at 11 months of age. Patient 2 was born with IUGR, significant craniofacial and body asymmetry, asymmetric skin hyperpigmentation, unilateral hearing loss, scoliosis, VSD, unexplained dilated cardiomyopathy, feeding difficulties, failure to thrive, and recurrent respiratory tract infections. She died at 7 months of age from respiratory failure. These two further cases of postnatally diagnosed trisomy 16 mosaicism highlight the variability of clinical features and outcome in this diagnosis. While Patient 2 presented with typical features of chromosomal mosaicism, Patient 1 had mild and transient features with essentially normal outcome, suggesting that trisomy 16 mosaicism may be under-diagnosed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the correlation of the extent of chromosomal aberrations including uniparental disomies (UPDs) by SNP-chip analysis and FISH to telomere length in 46 patients with CLL. CLL harboring high risk aberrations, i.e. deletions of 11q22-23 or 17p13, had significantly shorter telomeres (higher ΔTL) compared to patients with CLL without such abnormalities. Patients with high chromosomal aberration rates had a worse overall survival compared to cases with lower aberration rates. Interestingly, however, an increase was found in the number of UPDs with shorter telomeres. These findings support the idea that telomeres in CLL cells play a role in the overall chromosome stability and could be involved in the occurrence of UPDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After a proper medical history, growth analysis and physical examination of a short child, followed by radiological and laboratory screening, the clinician may decide to perform genetic testing. We propose several clinical algorithms that can be used to establish the diagnosis. GH1 and GHRHR should be tested in children with severe isolated growth hormone deficiency and a positive family history. A multiple pituitary dysfunction can be caused by defects in several genes, of which PROP1 and POU1F1 are most common. GH resistance can be caused by genetic defects in GHR, STAT5B, IGF1, IGFALS, which all have their specific clinical and biochemical characteristics. IGF-I resistance is seen in heterozygous defects of the IGF1R. If besides short stature additional abnormalities are present, these should be matched with known dysmorphic syndromes. If no obvious candidate gene can be determined, a whole genome approach can be taken to check for deletions, duplications and/or uniparental disomies.