15 resultados para Underground Mine
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In studies related to deep geological disposal of radioactive waste, it is current practice to transfer external information (e.g. from other sites, from underground rock laboratories or from natural analogues) to safety cases for specific projects. Transferable information most commonly includes parameters, investigation techniques, process understanding, conceptual models and high-level conclusions on system behaviour. Prior to transfer, the basis of transferability needs to be established. In argillaceous rocks, the most relevant common feature is the microstructure of the rocks, essentially determined by the properties of clay–minerals. Examples are shown from the Swiss and French programmes how transfer of information was handled and justified. These examples illustrate how transferability depends on the stage of development of a repository safety case and highlight the need for adequate system understanding at all sites involved to support the transfer.
Resumo:
Organic matter amendments are applied to contaminated soil to provide a better habitat for re-vegetation and remediation, and olive mill waste compost (OMWC) has been described as a promising material for this aim. We report here the results of an incubation experiment carried out in flooded conditions to study its influence in As and metal solubility in a trace elements contaminated soil. NPK fertilisation and especially organic amendment application resulted in increased As, Se and Cu concentrations in pore water. Independent of the amendment, dimethylarsenic acid (DMA) was the most abundant As species in solution. The application of OMWC increased pore water dissolved organic-carbon (DOC) concentrations, which may explain the observed mobilisation of As, Cu and Se; phosphate added in NPK could also be in part responsible of the mobilisation caused in As. Therefore, the application of soil amendments in mine soils may be particularly problematic in flooded systems.
Resumo:
The diffusion properties of the Opalinus Clay were studied in the underground research laboratory at Mont Terri (Canton Jura, Switzerland) and the results were compared with diffusion data measured in the laboratory on small-scale samples. The diffusion of HTO, Na-22(+), Cs+ and I- were investigated for a period of 10 months. The diffusion equipment used in the field experiment was designed in such a way that a solution of tracers was circulated through a sintered metal screen placed at the end of a borehole drilled in the formation. The concentration decrease caused by the diffusion of tracers into the rock could be followed with time and allowed first estimations of the effective diffusion coefficient. After 10 months, the diffusion zone was over-cored and the tracer profiles measured. From these profiles, effective diffusion coefficients and rock capacity factors Could be extracted by applying a two-dimensional transport model including diffusion and sorption. The simulations were done with the reactive transport code CRUNCH. In addition, results obtained from through-diffusion experiments oil small-sized samples with HTO, Cl-36(-) and Na-22(+) are presented and compared with the in situ data. In all cases. excellent agreement between the two data sets exists. Results for Cs+ indicated five times higher diffusion rates relative to HTO. Corresponding laboratory diffusion measurements are still lacking. However. our Cs+ data are in qualitative agreement wish through-diffusion data for Callovo-Oxfordian argillite rock samples. which also indicate significantly higher effective diffusivities for Cs+ relative to HTO.
Resumo:
The Lasail mining area (Sultanate of Oman) was contaminated by acid mine drainage during the exploitation and processing of local and imported copper ore and the subsequent deposition of sulphide-bearing waste material into an unsealed tailings dump. In this arid environment, the use of seawater in the initial stages of ore processing caused saline contamination of the fresh groundwater downstream of the tailings dump. After detection of the contamination in the 1980s, different source-controlled remediation activities were conducted including a seepage water collection system and, in 2005, surface sealing of the tailings dump using an HDPE-liner to prevent further infiltration of meteoric water. We have been assessing the benefits of the remediation actions undertaken so far. We present chemical and isotopic (δ18O, δ 2H, 3H) groundwater data from a long-term survey (8–16 years) of the Wadi Suq aquifer along a 28 km profile from the tailings dump to the Gulf of Oman. Over this period, most metal concentrations in the Wadi Suq groundwater decreased below detection limits. In addition, in the first boreholes downstream of the tailings pond, the salinity contamination has decreased by 30 % since 2005. This decrease appears to be related to the surface coverage of the tailings pond, which reduces flushing of the tailings by the sporadic, but commonly heavy, precipitation events. Despite generally low metal concentrations and the decreased salinity, groundwater quality still does not meet the WHO drinking water guidelines in more than 90 % of the Wadi Suq aquifer area. The observations show that under arid conditions, use of seawater for ore processing or any other industrial activity has the potential to contaminate aquifers for decades.
Resumo:
Numerical calculations describing weathering of the Poços de Caldas alkaline complex (Minas Gerais, Brazil) by infiltrating groundwater are carried out for time spans up to two million years in the absence of pyrite, and up to 500,000 years with pyrite present. Deposition of uranium resulting from infiltration of oxygenated, uranium bearing groundwater through the hydrothermally altered phonolitic host rock at the Osamu Utsumi uranium mine is also included in the latter calculation. The calculations are based on the quasi-stationary state approximation to mass conservation equations for pure advective transport. This approximation enables the prediction of solute concentrations, mineral abundances and porosity as functions of time and distance over geologic time spans. Mineral reactions are described by kinetic rate laws for both precipitation and dissolution. Homogeneous equilibrium is assumed to be maintained within the aqueous phase. No other constraints are imposed on the calculations other than the initial composition of the unaltered host rock and the composition of the inlet fluid, taken as rainwater modified by percolation through a soil zone. The results are in qualitative agreement with field observations at the Osamu Utsumi uranium mine. They predict a lateritic cover followed by a highly porous saprolitic zone, a zone of oxidized rock with pyrite replaced by iron-hydroxide, a sharp redox front at which uranium is deposited, and the reduced unweathered host rock. Uranium is deposited in a narrow zone located on the reduced side of the redox front in association with pyrite, in agreement with field observations. The calculations predict the formation of a broad dissolution front of primary kaolinite that penetrates deep into the host rock accompanied by the precipitation of secondary illite. Secondary kaolinite occurs in a saprolitic zone near the surface and in the vicinity of the redox front. Gibbsite forms a bi-modal distribution consisting of a maximum near the surface followed by a thin tongue extending downward into the weathered profile in agreement with field observations. The results are found to be insensitive to the kinetic rate constants used to describe mineral reactions.