2 resultados para Uncertainty Reduction

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stepwise uncertainty reduction (SUR) strategies aim at constructing a sequence of points for evaluating a function  f in such a way that the residual uncertainty about a quantity of interest progressively decreases to zero. Using such strategies in the framework of Gaussian process modeling has been shown to be efficient for estimating the volume of excursion of f above a fixed threshold. However, SUR strategies remain cumbersome to use in practice because of their high computational complexity, and the fact that they deliver a single point at each iteration. In this article we introduce several multipoint sampling criteria, allowing the selection of batches of points at which f can be evaluated in parallel. Such criteria are of particular interest when f is costly to evaluate and several CPUs are simultaneously available. We also manage to drastically reduce the computational cost of these strategies through the use of closed form formulas. We illustrate their performances in various numerical experiments, including a nuclear safety test case. Basic notions about kriging, auxiliary problems, complexity calculations, R code, and data are available online as supplementary materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.