10 resultados para Unbalanced
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10-producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1(PD/PD) animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.
Resumo:
Gallup (this issue) believes that our recent review on the function of yawning (Guggisberg et al., 2010) is unbalanced and that it ignores evidence for his thermoregulation hypothesis. Here we address these criticisms and show them to be untenable. While we never claimed that the social hypothesis of yawning has "definite experimental support", we emphasize the importance of experimental evidence for specific effects of yawns when considering why we yawn. The only specific effect of yawning that could be demonstrated so far is its contagiousness in humans, some non-human primates, and possibly dogs, whereas all studies investigating physiological consequences of yawns were unable to observe specific yawn-induced effects in the individual of any species. The argument that from an evolutionary perspective, yawns must have a "primitive" physiological function arises from imprecise reasoning.
Resumo:
The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.
Resumo:
Pineoblastoma represents a class of primitive neuroectodermal tumors (PNET) with poorly differentiated neuroepithelial cells that are histologically indistinguishable from medulloblastomas. It is a rare tumor, typically arising in childhood, and to date only a few cytogenetic cases have been published. We report four new cases in which conventional cytogenetics demonstrated the presence of an abnormal clone. The tumors showed a variety of ploidy levels, from hypodiploid to hypertetraploid. Both structural and numerical aberrations were frequent, and in three out of the four cases a large degree of cell-to-cell variation was observed. The most frequently involved chromosome in structural rearrangements was chromosome 1, observed in three of the four cases. The short arm was involved in two of the three cases; in the third case, the anomaly was in the long arm. Two cases showed unbalanced gain of chromosome 17q, one of them showing i(17)(q10). Together, the four cases illustrate the complex karyotypic nature of this tumor type and represent a step toward determining whether a nonrandom cytogenetic picture exists and how this may be related to other associated tumor types.
Resumo:
Despite embryonal rhabdomyosarcoma (eRMS) representing the most frequent form of RMS, the karyotypic characterization of this tumor subtype is still incomplete. We report the karyotypic analysis of two new cases of infant-onset eRMS. Both cases had a hyperdiploid karyotype, including gain of chromosomes 2 and 8. Only one of the cases showed a structural aberration, an unbalanced rearrangement involving 4p. These cases, together with a review of the literature, suggest that a karyotypic subgroup exists in infant eRMS that is defined by hyperdiploidy (<53 chromosomes) and includes gain of chromosomes 2, 8, 11, and 17, with few or no structural aberrations. Hence, this report illustrates that distinct karyotypic subgroups may be found in eRMS, which ultimately may be shown to have prognostic relevance.
Resumo:
Most recently discussion about the optimal treatment for different subsets of patients suffering from coronary artery disease has re-emerged, mainly because of the uncertainty caused by doctors and patients regarding the phenomenon of unpredictable early and late stent thrombosis. Surgical revascularization using multiple arterial bypass grafts has repeatedly proven its superiority compared to percutaneous intervention techniques, especially in patients suffering from left main stem disease and coronary 3-vessels disease. Several prospective randomized multicenter studies comparing early and mid-term results following PCI and CABG have been really restrictive, with respect to patient enrollment, with less than 5% of all patients treated during the same time period been enrolled. Coronary artery bypass grafting allows the most complete revascularization in one session, because all target coronary vessels larger than 1 mm can be bypassed in their distal segments. Once the patient has been turn-off for surgery, surgeons have to consider the most complete arterial revascularization in order to decrease the long-term necessity for re-revascularization; for instance patency rate of the left internal thoracic artery grafted to the distal part left anterior descending artery may be as high as 90-95% after 10 to 15 years. Early mortality following isolated CABG operation has been as low as 0.6 to 1% in the most recent period (reports from the University Hospital Berne and the University Hospital of Zurich); beside these excellent results, the CABG option seems to be less expensive than PCI with time, since the necessity for additional PCI is rather high following initial PCI, and the price of stent devices is still very high, particularly in Switzerland. Patients, insurance and experts in health care should be better and more honestly informed concerning the risk and costs of PCI and CABG procedures as well as about the much higher rate of subsequent interventions following PCI. Team approach for all patients in whom both options could be offered seems mandatory to avoid unbalanced information of the patients. Looking at the recent developments in transcatheter valve treatments, the revival of cardiological-cardiosurgical conferences seems to a good option to optimize the cooperation between the two medical specialties: cardiology and cardiac surgery.
Resumo:
Immune thrombocytopenia (ITP) is a complex disease. The pathogenic and clinical heterogeneity of ITP is reflected by reports on variability in patient history and treatment response, in concert with recent evidence from mechanistic studies. Programmed cell death (PCD) pathways are thought to play a peculiar role in the megakaryocyte lineage in terms of hemostasis and the generation and function of megakaryocytes and platelets; unbalanced genetic or environmental disturbances of these tightly regulated pathways may cause thrombocytopenia. Dysregulated PCD has also been linked to peripheral platelet destruction, intramedullary apoptosis, and inefficient thrombopoiesis in ITP. In this article, we discuss novel and controversial findings on the role of PCD in the megakaryocyte lineage and their potential implications in terms of pathogenesis, diagnosis, and treatment of ITP.
Resumo:
This paper describes sideband response measurements and atmospheric observations with a double sideband and two Single Sideband (SSB) receiver prototypes developed for the multi-beam limb sounder instrument stratosphere-troposphere exchange and climate monitor radiometer. We first show an advanced Fourier-Transform Spectroscopy (FTS) method for sideband response and spurious signal characterization. We then present sideband response measurements of the different prototype receivers and we compare the results of the SSB receivers with sideband measurements by injecting a continuous wave signal into the upper and lower sidebands. The receivers were integrated into a total-power radiometer and atmospheric observations were carried out. The observed spectra were compared to forward model spectra to conclude on the sideband characteristics of the different receivers. The two sideband characterization methods show a high degree of agreement for both SSB receivers with various local oscillator settings. The measured sideband response was used to correct the forward model simulations. This improves the agreement with the atmospheric observations and explains spectral features caused by an unbalanced sideband response. The FTS method also allows to quantify the influence of spurious harmonic responses of the receiver.
Resumo:
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.
Resumo:
Abstract. We resumed mowing in two plots of ca. 100 m2 in an abandoned meadow dominated by Brachypodium pinnatum on the slope of Monte Generoso (Switzerland). We monitored species composition and hay yield using point quadrats and biomass samples. Species frequencies changed little during 10 yr (1988–1997) while hay yields showed large fluctuations according to mean relative humidity in April-June. We performed a seed-addition experiment to test whether the establishment of meadow species is limited by lack of diaspores or favourable microsites for germination and recruitment from the seed bank. We sowed ca. 12 000 seeds of 12 species originating from a nearby meadow individually in plots of a 4 × 6 unbalanced Latin square with four treatments, burning, mowing, mowing and removal of a layer of decayed organic matter, and a control. We monitored the fate of seedling individuals for 24 months. Seedlings of all species were established and survived for 12 months, 10 species survived during at least 24 months, some reached a reproductive stage. Species responded to different qualities of microsites provided by the different treatments thus required different regeneration niches. Spontaneous long-distance immigration was insignificant. We conclude that the former species composition of abandoned meadows cannot easily be restored by mowing alone because many plant species of meadows do not have persistent seed banks and immigration over distances of more than 25 m and successful establishment is very unlikely.