96 resultados para Ultrasonic wave
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Root canal treatment is a frequently performed dental procedure and is carried out on teeth in which irreversible pulpitis has led to necrosis of the dental pulp. Removal of the necrotic tissue remnants and cleaning and shaping of the root canal are important phases of root canal treatment. Treatment options include the use of hand and rotary instruments and methods using ultrasonic or sonic equipment. OBJECTIVES: The objectives of this systematic review of randomized controlled trials were to determine the relative clinical effectiveness of hand instrumentation versus ultrasonic instrumentation alone or in conjunction with hand instrumentation for orthograde root canal treatment of permanent teeth. MATERIAL AND METHODS: The search strategy retrieved 226 references from the Cochrane Oral Health Group Trials Register (7), the Cochrane Central Register of Controlled Trials (CENTRAL) (12), MEDLINE (192), EMBASE (8) and LILACS (7). No language restriction was applied. The last electronic search was conducted on December 13th, 2007. Screening of eligible studies was conducted in duplicate and independently. RESULTS: Results were to be expressed as fixed-effect or random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confidence intervals. Heterogeneity was to be investigated including both clinical and methodological factors. No eligible randomized controlled trials were identified. CONCLUSIONS: This review illustrates the current lack of published or ongoing randomized controlled trials and the unavailability of high-level evidence based on clinically relevant outcomes referring to the effectiveness of ultrasonic instrumentation used alone or as an adjunct to hand instrumentation for orthograde root canal treatment. In the absence of reliable research-based evidence, clinicians should base their decisions on clinical experience, individual circumstances and in conjunction with patients' preferences where appropriate. Future randomized controlled trials might focus more closely on evaluating the effectiveness of combinations of these interventions with an emphasis on not only clinically relevant, but also patient-centered outcomes.
Resumo:
Fully controlled liquid injection and flow in hydrophobic polydimethylsiloxane (PDMS) two-dimensional microchannel arrays based on on-chip integrated, low-voltage-driven micropumps are demonstrated. Our architecture exploits the surface-acoustic-wave (SAW) induced counterflow mechanism and the effect of nebulization anisotropies at crossing areas owing to lateral propagating SAWs. We show that by selectively exciting single or multiple SAWs, fluids can be drawn from their reservoirs and moved towards selected positions of a microchannel grid. Splitting of the main liquid flow is also demonstrated by exploiting multiple SAW beams. As a demonstrator, we show simultaneous filling of two orthogonal microchannels. The present results show that SAW micropumps are good candidates for truly integrated on-chip fluidic networks allowing liquid control in arbitrarily shaped two-dimensional microchannel arrays.
Resumo:
Therapy of metacarpal neck fractures depending on radiographically measured palmar angulation is discussed controversially in the literature. Some authors describe normal hand function of malunited metacarpal neck fractures with a palmar angulation up to 70°; others define 30° as the uppermost limit to maintain normal hand function. However, the methods of measuring palmar angulation are not clearly defined. Here, we present a new method to measure palmar angulation using ultrasound. The aim of this prospective study is to compare the radiographic methods of measuring palmar angulation with the ultrasound method. PATIENTS/MATERIAL AND METHOD: 20 patients with a neck fracture of the metacarpals IV or V were treated either conservatively or operatively. 2 weeks after trauma or operation, an x-ray was performed. 2 examiners measured the palmar angulation on the oblique and lateral projections using 2 different methods (medullary canal and dorsal cortex methods). At the same time, the 2 examiners performed measurements of palmar angulation using ultrasound. The measurements obtained with the different methods as well as by the 2 examiners at 2 different terms were compared. Intra- and interobserver reliability of each method was calculated, and for the ultrasound method a test for accuracy of the measured angles was performed.
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
Systolic right ventricular (RV) function is an important predictor in the course of various congenital and acquired heart diseases. Its practical determination by echocardiography remains challenging. We compared routine assessment of lateral tricuspid annular systolic motion velocity (TV(lat), cm/s) using pulsed-wave tissue Doppler imaging from the apical 4-chamber view with cardiac magnetic resonance (CMR) as reference method.
Resumo:
Generalised epileptic seizures are frequently accompanied by sudden, reversible transitions from low amplitude, irregular background activity to high amplitude, regular spike-wave discharges (SWD) in the EEG. The underlying mechanisms responsible for SWD generation and for the apparently spontaneous transitions to SWD and back again are still not fully understood. Specifically, the role of spatial cortico-cortical interactions in ictogenesis is not well studied. We present a macroscopic, neural mass model of a cortical column which includes two distinct time scales of inhibition. This model can produce both an oscillatory background and a pathological SWD rhythm. We demonstrate that coupling two of these cortical columns can lead to a bistability between out-of-phase, low amplitude background dynamics and in-phase, high amplitude SWD activity. Stimuli can cause state-dependent transitions from background into SWD. In an extended local area of cortex, spatial heterogeneities in a model parameter can lead to spontaneous reversible transitions from a desynchronised background to synchronous SWD due to intermittency. The deterministic model is therefore capable of producing absence seizure-like events without any time dependent adjustment of model parameters. The emergence of such mechanisms due to spatial coupling demonstrates the importance of spatial interactions in modelling ictal dynamics, and in the study of ictogenesis.
Resumo:
This study examines the excitability and recruitment of spinal motoneurons in human sleep. The main objective was to assess whether supraspinal inhibition affects the different subpopulations of the compound spinal motoneuron pool in the same way or rather in a selective fashion in the various sleep stages. To this end, we studied F-conduction velocities (FCV) and F-tacheodispersion alongside F-amplitudes and F-persistence in 22 healthy subjects in sleep stages N2, N3 (slow-wave sleep), REM and in wakefulness. Stimuli were delivered on the ulnar nerve, and F-waves were recorded from the first dorsal interosseus muscle. Repeated sets of stimuli were stored to obtain at least 15 F-waves for each state of vigilance. F-tacheodispersion was calculated based on FCVs using the modified Kimura formula. Confirming the only previous study, excitability of spinal motoneurons was generally decreased in all sleep stages compared with wakefulness as indicated by significantly reduced F-persistence and F-amplitudes. More importantly, F-tacheodispersion showed a narrowed range of FCV in all sleep stages, most prominently in REM. In non-REM, this narrowed range was associated with a shift towards significantly decreased maximal FCV and mean FCV as well as with a trend towards lower minimal FCV. In REM, the lowering of mean FCV was even more pronounced, but contrary to non-REM sleep without a shift of minimal and maximal FCV. Variations in F-tacheodispersion between sleep stages suggest that different supraspinal inhibitory neuronal circuits acting on the spinal motoneuron pool may contribute to muscle hypotonia in human non-REM sleep and to atonia in REM sleep.
Enhancements of gravity wave amplitudes at midlatitudes during sudden stratospheric warmings in 2008
Resumo:
Rhythm analysis of the fetal heart is hampered by the inability to routinely obtain electrocardiographic recordings of the fetus. Doppler studies of fetal cardiac tissue movements, assessing cardiac movements both qualitatively and quantitatively, have recently been described. We used a conventional high-resolution ultrasound system to obtain rhythm data from pulsed-wave tissue Doppler signals of the fetal heart in normal cardiac rhythm and in a variety of fetal cardiac arrhythmias.
Resumo:
This study aims to quantify by intravital microscopy the microhemodynamic response after extracorporeal shock wave application (ESWA) to the physiologic microcirculation of the mouse dorsal skinfold chamber.