7 resultados para Ultra Wide Band Antennas

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-based localization techniques such as multilateration are favoured for positioning to wide-band signals. Applying the same techniques with narrow-band signals such as GSM is not so trivial. The process is challenged by the needs of synchronization accuracy and timestamp resolution both in the nanoseconds range. We propose approaches to deal with both challenges. On the one hand, we introduce a method to eliminate the negative effect of synchronization offset on time measurements. On the other hand, we propose timestamps with nanoseconds accuracy by using timing information from the signal processing chain. For a set of experiments, ranging from sub-urban to indoor environments, we show that our proposed approaches are able to improve the localization accuracy of TDOA approaches by several factors. We are even able to demonstrate errors as small as 10 meters for outdoor settings with narrow-band signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterodyne receivers at millimeter and submillimeter wavelength are widely used for radiometric spectral line observations for atmospheric remote sensing or radio astronomy. The quantitative analysis of such observations requires an accurate knowledge of the mixers's sideband ratio. In addition, its potential sensitivity to spurious harmonics needs to be well understood. In this paper, we discuss a measurement technique for these receiver characteristics, which is based on a scanning Martin Puplett Interferometer used in conjunction with a wide band digital autocorrelation spectrometer for the analysis of the intermediate frequency band. We present measurement results of different double sideband and sideband separating mixers, which were developed for the proposed 340GHz multi-beam limb sounder STEAMR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene nanoribbons (GNRs), defined as nanometer-wide strips of graphene, have attracted increasing attention as promising candidates for next-generation semiconductors. Here, we demonstrate a bottom-up strategy toward novel low band gap GNRs (E-g = 1.70 eV) with a well-defined cove-type periphery both in solution and on a solid substrate surface with chrysene as the key monomer. Corresponding cyclized chrysene-based oligornerS consisting of the dimer and tetramer are obtained via an Ullmann Coupling followed by oxidative intramolecular cyclodehydrogenation in solution, and much higher GNR homologues via on-surface synthesis. These oligomers adopt nonplanar structures due to the isteric repulsion between the two C-H bonds at the inner cove position. Characterizations by single crystal X-ray analysis, UV-vis absorption spectroscopy, NMR spectroscopy, and scanning tunneling microscopy (STM) are described. The interpretation is assisted by density functional theory (DFT) calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Young, nearby stars are ideal targets for direct imaging searches for giant planets and brown dwarf companions. After the first-imaged planet discoveries, vast efforts have been devoted to the statistical analysis of the occurence and orbital distributions of giant planets and brown dwarf companions at wide (>= 5-6 AU) orbits. Aims. In anticipation of the VLT/SPHERE planet-imager, guaranteed-time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 to identify new faint comoving companions to ultimately analyze the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. Methods. We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8 ''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10(-6) at 1.5 ''. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects. Results. During our survey, twelve systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected; 90% of them were in four crowded fields. With the exception of HD8049 B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for the semi-major axes of [10, 2000] AU: typically less than 15% between 100 and 500 AU and less than 10% between 50 and 500 AU for exoplanets that are more massive than 5 M-Jup and 10 M-Jup respectively, if we consider a uniform input distribution and a confidence level of 95%. Conclusions. The results from this survey agree with earlier programs emphasizing that massive, gas giant companions on wide orbits around solar-type stars are rare. These results will be part of a broader analysis of a total of similar to 210 young, solar-type stars to bring further statistical constraints for theoretical models of planetary formation and evolution.