48 resultados para Uashat-Mani-Utenam
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Members of the ATP-binding cassette (ABC) transporters play a pivotal role in cellular lipid efflux. To identify candidate cholesterol transporters implicated in lipid homeostasis and mammary gland (MG) physiology, we compared expression and localization of ABCA1, ABCG1, and ABCA7 and their regulatory genes in mammary tissues of different species during the pregnancy-lactation cycle. Murine and bovine mammary glands (MGs) were investigated during different functional stages. The abundance of mRNAs was determined by quantitative RT-PCR. Furthermore, transporter proteins were localized in murine, bovine, and human MGs by immunohistochemistry. In the murine MG, ABCA1 mRNA abundance was elevated during nonlactating compared with lactating stages, whereas ABCA7 and ABCA1 mRNA profiles were not altered. In the bovine MG, ABCA1, ABCG1, and ABCA7 mRNAs abundances were increased during nonlactating stages compared with lactation. Furthermore, associations between mRNA levels of transporters and their regulatory genes LXRalpha, PPARgamma, and SREBPs were found. ABCA1, ABCG1, and ABCA7 proteins were localized in glandular MG epithelial cells (MEC) during lactation, whereas during nonlactating stages, depending on species, the proteins showed distinct localization patterns in MEC and adipocytes. Our results demonstrate that ABCA1, ABCG1, and ABCA7 are differentially expressed between lactation and nonlactating stages and in association with regulatory genes. Combined expression and localization data suggest that the selected cholesterol transporters are universal MG transporters involved in transport and storage of cholesterol and in lipid homeostasis of MEC. Because of the species-specific expression patterns of transporters in mammary tissue, mechanisms of cholesterol homeostasis seem to be differentially regulated between species.
Resumo:
Lipids are important for cell function and survival, but abnormal concentrations may lead to various diseases. Cholesterol homeostasis is greatly dependent on the active transport by membrane proteins, whose activities coordinate lipid status with cellular function. Intestinal Niemann-Pick C1-Like 1 protein (NPC1L1) and scavenger receptor B1 (SR-B1) participate in the uptake of extracellular cholesterol, whereas ATP binding cassette A1 (ABCA1) mediates the efflux of excessive intracellular cholesterol. Caveolin-1 binds cholesterol and fatty acids (FA) and participates in cholesterol trafficking. Sterol response element binding protein-2 (SREBP-2) is a sensor that regulates intracellular cholesterol synthesis. Given that cholesterol is a constituent of chylomicrons, whose synthesis is enhanced with an increased FA supply, we tested the hypothesis that feeding polyunsaturated FA (PUFA)-enriched diets in treatment of canine chronic enteropathies alters the mRNA expression of genes involved in cholesterol homeostasis. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we compared the mRNA abundance of NPC1L1, SR-B1, ABCA1, caveolin-1, and SREBP-2 in duodenal mucosal biopsies of dogs with food-responsive diarrhea (FRD; n=14) and inflammatory bowel disease (IBD; n=7) before and after treatment with cholesterol-free PUFA-enriched diets and in healthy controls (n=14). The abundance of caveolin-1, ABCA1, and SREBP-2 were altered by PUFA-enriched diets (P<0.05), whereas that of NPC1L1 and SR-B1 mRNA remained unchanged. The gene expression of caveolin-1, ABCA1, and SREBP-2 was down-regulated (P<0.05) by PUFA-enriched diets in IBD dogs only. Our results suggest that feeding PUFA-enriched diets may alter cholesterol homeostasis in duodenal mucosal cells of dogs suffering from IBD.
Resumo:
The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 play an important role in cellular cholesterol homeostasis, but their function in mammary gland (MG) tissue remains elusive. A bovine MG model that allows repeated MG sampling in identical animals at different functional stages was used to test whether 1) ABCA1 and ABCG1 protein expression and subcellular localization in mammary epithelial cells (MEC) change during the pregnancy-lactation cycle, and 2) these 2 proteins were present in milk fat globules (MFG). Expression and localization in MEC were investigated in bovine MG tissues at the end of lactation, during the dry period (DP), and early lactation using immunohistochemical and immunofluorescence approaches. The presence of ABCA1 and ABCG1 in MFG isolated from fresh milk was determined by immunofluorescence. The ABCA1 protein expression in MEC, expressed as arbitrary units, was higher during the end of lactation (12.2±0.24) and the DP (12.5±0.22) as compared with during early lactation (10.2±0.65). In contrast, no significant change in ABCG1 expression existed between the stages. Throughout the cycle, ABCA1 and ABCG1 were detected in the apical (41.9±24.8 and 49.0±4.96% of cows, respectively), basal (56.2±28.1 and 54.6±7.78% of cows, respectively), or entire cytoplasm (56.8±13.4 and 61.6±14.4% of cows, respectively) of MEC, or showed combined localization. Unlike ABCG1, ABCA1 was absent at the apical aspect of MEC during early lactation. Immunolabeling experiments revealed the presence of ABCA1 and ABCG1 in MFG membranes. Findings suggest a differential, functional stage-dependent role of ABCA1 and ABCG1 in cholesterol homeostasis of the MG epithelium. The presence of ABCA1 and ABCG1 in MFG membranes suggests that these proteins are involved in cholesterol exchange between MEC and alveolar milk.
Resumo:
Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.
Resumo:
The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA(+) plasma cells also produce the antimicrobial mediators tumour-necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA(+) plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-α and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.