67 resultados para UV-Ozone
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We investigate the effects of a recently proposed 21st century Dalton minimum like decline of solar activity on the evolution of Earth's climate and ozone layer. Three sets of two member ensemble simulations, radiatively forced by a midlevel emission scenario (Intergovernmental Panel on Climate Change RCP4.5), are performed with the atmosphere-ocean chemistry-climate model AOCCM SOCOL3-MPIOM, one with constant solar activity, the other two with reduced solar activity and different strength of the solar irradiance forcing. A future grand solar minimum will reduce the global mean surface warming of 2 K between 1986–2005 and 2081–2100 by 0.2 to 0.3 K. Furthermore, the decrease in solar UV radiation leads to a significant delay of stratospheric ozone recovery by 10 years and longer. Therefore, the effects of a solar activity minimum, should it occur, may interfere with international efforts for the protection of global climate and the ozone layer.
Resumo:
Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric Composition Change) ozone radiometer measuring at Bern.
Resumo:
Homeopathic preparations are used in homeopathy and anthroposophic medicine. Although there is evidence of effectiveness in several clinical studies, including double-blinded randomized controlled trials, their nature and mode of action could not be explained with current scientific approaches yet. Several physical methods have already been applied to investigate homeopathic preparations but it is yet unclear which methods are best suited to identify characteristic physicochemical properties of homeopathic preparations. The aim of this study was to investigate homeopathic preparations with UV-spectroscopy. In a blinded, randomized, controlled experiment homeopathic preparations of copper sulfate (CuSO(4); 11c-30c), quartz (SiO(2); 10c-30c, i.e., centesimal dilution steps) and sulfur (S; 11×-30×, i.e., decimal dilution steps) and controls (one-time succussed diluent) were investigated using UV-spectroscopy and tested for contamination by inductively coupled plasma mass spectrometry (ICP-MS). The UV transmission for homeopathic preparations of CuSO(4) preparations was significantly lower than in controls. The transmission seemed to be also lower for both SiO(2) and S, but not significant. The mean effect size (95% confidence interval) was similar for the homeopathic preparations: CuSO(4) (pooled data) 0.0544% (0.0260-0.0827%), SiO(2) 0.0323% (-0.0064% to 0.0710%) and S 0.0281% (-0.0520% to 0.1082%). UV transmission values of homeopathic preparations had a significantly higher variability compared to controls. In none of the samples the concentration of any element analyzed by ICP-MS exceeded 100 ppb. Lower transmission of UV light may indicate that homeopathic preparations are less structured or more dynamic than their succussed pure solvent.
Resumo:
For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.
Resumo:
An efficient synthetic approach to a symmetrically functionalized tetrathiafulvalene (TTF) derivative with two diamine moieties, 2-[5,6-diamino-4,7-bis(4-pentylphenoxy)-1,3-benzodithiol-2-ylidene]-4,7- bis(4-pentylphenoxy)-1,3-benzodithiole-5,6-diamine (2), is reported. The subsequent Schiff-base reactions of 2 afford large p-conjugated multiple donoracceptor (DA) arrays, for example, the triad 2-[4,9-bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxalin-2-ylidene]-4,9 -bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxaline (8) and the corresponding tetrabenz[bc,ef,hi,uv]ovalene-fused pentad 1, in good yields and high purity. The novel redox-active nanographene 1 is so far the largest known TTF-functionalized polycyclic aromatic hydrocarbon (PAH) with a well-resolved 1H NMR spectrum. The electrochemically highly amphoteric pentad 1 and triad 8 exhibit various electronically excited charge-transfer states in different oxidation states, thus leading to intense optical intramolecular charge-transfer (ICT) absorbances over a wide spectral range. The chemical and electrochemical oxidations of 1 result in an unprecedented TTF+ radical cation dimerization, thereby leading to the formation of [1+]2 at room temperature in solution due to the stabilizing effect, which arises from strong pp interactions. Moreover, ICT fluorescence is observed with large solvent-dependent Stokes shifts and quantum efficiencies of 0.05 for 1 and 0.035 for 8 in dichloromethane.
Resumo:
The in vitro study was aimed to determine the effect of ozone on periodontopathogenic microorganisms. Ozone was generated for 6 s-2 × 24 s (corresponding to 0.56 mg-2 × 2.24 mg of ozone) against 23 mainly anaerobic periodontopathogenic species. Agar diffusion test was used as a screening method. Then, the killing activity was tested in a serum-free environment and with 25% v/v inactivated serum. Further, the effect of ozone on bactericidal activity of native serum was analyzed against Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. Agar diffusion test showed a high efficacy of ozone against microorganisms, especially against Porphyromonas gingivalis. This result was confirmed by the killing tests; most of the strains in a concentration of 10(5) were completely eliminated after twofold 18-s application of ozone. Only four of the six potentially "superinfecting" species (Staphylococcus aureus, Enterococcus faecalis, Enterobacter cloacae, Candida albicans) survived in part. Addition of heat-inactivated serum reduced the killing rate of ozone by 78% after 6-s and by 47% after twofold 18-s exposures; no strain was completely eradicated after any application of ozone. The bactericidal effect of native serum was enhanced after application of ozone; no effect was visible on the included A. actinomycetemcomitans strain which was found to be completely resistant to the bactericidal action of serum. In conclusion, (a) ozone has a strong antibacterial activity against putative periodontopathogenic microorganisms, and (b) the bactericidal effect is reduced in the presence of serum. Ozone may have potential as an adjunctive application to mechanical treatment in periodontitis patients.