2 resultados para URNIUM TETRAFLUORIDE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dental erosion develops through chronic exposure to extrinsic/intrinsic acids with a low pH. Enamel erosion is characterized by a centripetal dissolution leaving a small demineralized zone behind. In contrast, erosive demineralization in dentin is more complex as the acid-induced mineral dissolution leads to the exposure of collagenous organic matrix, which hampers ion diffusion and, thus, reduces further progression of the lesion. Topical fluoridation inducing the formation of a protective layer on dental hard tissue, which is composed of CaF(2) (in case of conventional fluorides like amine fluoride or sodium fluoride) or of metal-rich surface precipitates (in case of titanium tetrafluoride or tin-containing fluoride products), appears to be most effective on enamel. In dentin, the preventive effect of fluorides is highly dependent on the presence of the organic matrix. In situ studies have shown a higher protective potential of fluoride in enamel compared to dentin, probably as the organic matrix is affected by enzymatical and chemical degradation as well as by abrasive influences in the clinical situation. There is convincing evidence that fluoride, in general, can strengthen teeth against erosive acid damage, and high-concentration fluoride agents and/or frequent applications are considered potentially effective approaches in preventing dental erosion. The use of tin-containing fluoride products might provide the best approach for effective prevention of dental erosion. Further properly designed in situ or clinical studies are recommended in order to better understand the relative differences in performance of the various fluoride agents and formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of fluoride in caries prevention has been convincingly proven. In recent years, researchers have investigated the preventive effects of different fluoride formulations on erosive tooth wear with positive results, but their action on caries and erosion prevention must be based on different requirements, because there is no sheltered area in the erosive process as there is in the subsurface carious lesions. Thus, any protective mechanism from fluoride concerning erosion is limited to the surface or the near surface layer of enamel. However, reports on other protective agents show superior preventive results. The mechanism of action of tin-containing products is related to tin deposition onto the tooth surface, as well as the incorporation of tin into the near-surface layer of enamel. These tin-rich deposits are less susceptible to dissolution and may result in enhanced protection of the underlying tooth. Titanium tetrafluoride forms a protective layer on the tooth surface. It is believed that this layer is made up of hydrated hydrogen titanium phosphate. Products containing phosphates and/or proteins may adsorb either to the pellicle, rendering it more protective against demineralization, or directly to the dental hard tissue, probably competing with H(+) at specific sites on the tooth surface. Other substances may further enhance precipitation of calcium phosphates on the enamel surface, protecting it from additional acid impacts. Hence, the future of fluoride alone in erosion prevention looks grim, but the combination of fluoride with protective agents, such as polyvalent metal ions and some polymers, has much brighter prospects.