5 resultados para UNSPORULATED OOCYST
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The protozoan parasite Toxoplasma gondii infects almost all warm blooded animal species including humans, and is one of the most prevalent zoonotic parasites worldwide. Post-natal infection in humans is acquired through oral uptake of sporulated T. gondii oocysts or by ingestion of parasite tissue cysts upon consumption of raw or undercooked meat. This study was undertaken to determine the prevalence of oocyst-shedding by cats and to assess the level of infection with T. gondii in meat-producing animals in Switzerland via detection of genomic DNA (gDNA) in muscle samples. In total, 252 cats (44 stray cats, 171 pet cats, 37 cats with gastrointestinal disorders) were analysed coproscopically, and subsequently species-specific identification of T. gondii oocysts was achieved by Polymerase Chain Reaction (PCR). Furthermore, diaphragm samples of 270 domestic pigs (120 adults, 50 finishing, and 100 free-range animals), 150 wild boar, 250 sheep (150 adults and 100 lambs) and 406 cattle (47 calves, 129 heifers, 100 bulls, and 130 adult cows) were investigated by T. gondii-specific real-time PCR. For the first time in Switzerland, PCR-positive samples were subsequently genotyped using nine PCR-restriction fragment length polymorphism (PCR-RFLP) loci (SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) for analysis. Only one of the cats shed T. gondii oocysts, corresponding to a T. gondii prevalence of 0.4% (95% CI: 0.0-2.2%). In meat-producing animals, gDNA prevalence was lowest in wild boar (0.7%; 95% CI: 0.0-3.7%), followed by sheep (2.0%; 95% CI: 0.1-4.6%) and pigs (2.2%; 95% CI: 0.8-4.8%). The highest prevalence was found in cattle (4.7%; 95% CI: 2.8-7.2%), mainly due to the high prevalence of 29.8% in young calves. With regard to housing conditions, conventional fattening pigs and free-range pigs surprisingly exhibited the same prevalence (2.0%; 95% CI: 0.2-7.0%). Genotyping of oocysts shed by the cat showed T. gondii with clonal Type II alleles and the Apico I allele. T. gondii with clonal Type II alleles were also predominantly observed in sheep, while T. gondii with mixed or atypical allele combinations were very rare in sheep. In pigs and cattle however, genotyping of T. gondii was often incomplete. These findings suggested that cattle in Switzerland might be infected with Toxoplasma of the clonal Types I or III, atypical T. gondii or more than one clonal Type.
Resumo:
The protozoan parasite Neospora caninum is one of the most important abortifacient organisms in cattle worldwide. The dog is known to act as definitive host although its potential role as infection source for bovines still remains unelucidated. The aim of the present study was to compile initial epidemiological data on the prevalence and incidence of N. caninum in Swiss dogs acting as definitive hosts. Thus, 249 Swiss dogs were investigated coproscopically in monthly intervals over a period of 1 year. A total of 3289 fecal samples was tested by the flotation technique. Among these, 202 were shown to contain Sarcocystis sp. (6.1%), 149 Cystoisospora sp. (=Isospora sp.; 4.5%) and 25 Hammondia/Neospora-like oocysts (HNlO) (0.7%). All but one sample containing HNlO were from different dogs; one dog shed HNlO at two subsequent time points. Calculation of the yearly incidence for HNlO resulted in the surprisingly high value of 9.2%. Farm dogs exhibited a higher incidence for HNlO than urban family dogs. Thirteen out of the 25 HNlO-samples showed sporulation after 5 days incubation at room temperature. HNlO were further differentiated by species-specific PCR. However, all HNlO-samples were negative for N. caninum, Hammondia heydorni and Toxoplasma gondii. One reason may be the low oocyst density found in most fecal samples, which did not permit us to carry out PCR under optimal conditions. Three out of the 25 HNlO-cases contained enough oocysts to allow further enrichment and purification by the flotation technique. Subsequently, twenty to fifty sporulated HNlO-oocysts were orally administered to Meriones unguiculatus. All gerbils were seronegative for N. caninum at 5 weeks p.i. A N. caninum-seroprevalence of 7.8% was determined by ELISA upon 1132 serum samples collected from dogs randomly selected by veterinarians among their clinical patients.
Resumo:
Diarrhoea caused by Cryptosporidium parvum is a major problem in calves younger than 4 weeks of age. To date only a few compounds have been approved for prophylactic and none for therapeutic use. Nitazoxanide (NTZ) has proven its efficacy in vitro against C. parvum and is approved by FDA for the treatment of human cryptosporidiosis. In a first experimental study, 3 uninfected calves were treated with NTZ and pharmacokinetics was followed through blood samples. Serum samples of uninfected treated calves contained both NTZ metabolites (tizoxanide and tizoxanide glucuronide) and oral administration at 12 h intervals was considered as optimal. Three groups of three calves (1-3 days old) were then each inoculated with 1x10(7) oocysts of C. parvum (cattle genotype): the prophylactic group received 15 mg/kg body weight NTZ twice daily orally in milk from 1 day before to 8 days postinoculation (dpi). The therapeutic group received the same dosage of NTZ for 10 days from the appearance of diarrhoea (between 1 and 5 dpi). The control group was left untreated. All calves were monitored daily from day -1 to 28 dpi and faecal samples were collected for evaluation of consistency and for determination of oocyst numbers per gram (OPG) of faeces. Diarrhoea was observed in all calves within the first week. Neither prophylactic nor therapeutic use of NTZ improved the clinical appearance and calves of the therapeutic showed a longer diarrheic episode (p<0.05) with strong altered faecal consistency compared to the untreated control group. The number of days with oocyst excretion did not differ significantly between the groups. In 5 out of 6 infected and treated calves oocyst excretion stopped only after discontinuation of treatment. In the prophylactic and in the control group mean values of the sum of the daily OPG per calf (8.5x10(6) and 8.0x10(6), respectively) and of the mean daily number of OPG (0.3x10(6) and 0.3x10(6), respectively) were similar, while the therapeutic group showed significantly lower values (1.9x10(6) and 0.06x10(6), respectively, p<0.05). However oocyst determinations in this group may have been altered by the severe diarrhoea, diluting oocyst densities in the analysed faecal samples. In conclusion, these preliminary results about the first prophylactic and therapeutic use of NTZ in calves did not show the expected positive effect on the course of the Cryptosporidium-infection, neither on reducing the clinical severity, nor on oocyst excretion.
Resumo:
Plasmodium parasites express a potent inhibitor of cysteine proteases (ICP) throughout their life cycle. To analyze the role of ICP in different life cycle stages, we generated a stage-specific knockout of the Plasmodium berghei ICP (PbICP). Excision of the pbicb gene occurred in infective sporozoites and resulted in impaired sporozoite invasion of hepatocytes, despite residual PbICP protein being detectable in sporozoites. The vast majority of these parasites invading a cultured hepatocyte cell line did not develop to mature liver stages, but the few that successfully developed hepatic merozoites were able to initiate a blood stage infection in mice. These blood stage parasites, now completely lacking PbICP, exhibited an attenuated phenotype but were able to infect mosquitoes and develop to the oocyst stage. However, PbICP-negative sporozoites liberated from oocysts exhibited defective motility and invaded mosquito salivary glands in low numbers. They were also unable to invade hepatocytes, confirming that control of cysteine protease activity is of critical importance for sporozoites. Importantly, transfection of PbICP-knockout parasites with a pbicp-gfp construct fully reversed these defects. Taken together, in P. berghei this inhibitor of the ICP family is essential for sporozoite motility but also appears to play a role during parasite development in hepatocytes and erythrocytes.
Resumo:
Here we discuss proteomic analyses of whole cell preparations of the mosquito stages of malaria parasite development (i.e. gametocytes, microgamete, ookinete, oocyst and sporozoite) of Plasmodium berghei. We also include critiques of the proteomes of two cell fractions from the purified ookinete, namely the micronemes and cell surface. Whereas we summarise key biological interpretations of the data, we also try to identify key methodological constraints we have met, only some of which we were able to resolve. Recognising the need to translate the potential of current genome sequencing into functional understanding, we report our efforts to develop more powerful combinations of methods for the in silico prediction of protein function and location. We have applied this analysis to the proteome of the male gamete, a cell whose very simple structural organisation facilitated interpretation of data. Some of the in silico predictions made have now been supported by ongoing protein tagging and genetic knockout studies. We hope this discussion may assist future studies.