26 resultados para UNDERSTANDING MECHANISMS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Hand transplantation has been indicated in selective patients after traumatic upper extremity amputation and only performed in a few centers around the world for the last decade. In comparison to solid organ transplantation, there is a challenge to overcome the host immunological barrier due to complex antigenicity of the different included tissues, the skin being the most susceptible to rejection. Patients require lifelong immunosuppression for non life-threatening conditions. Minimization of maintenance immunosuppression represents the key step for promoting wider applicability of hand transplantation. Current research is working towards the understanding mechanisms of composite tissue allograft (CTA) rejection. Worldwide, in 51 patients 72 hands (21 double hand transplants) and once both arms have been successfully transplanted since 1998.
Resumo:
Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.
Resumo:
Fogo selvagem is an endemic form of pemphigus foliaceus (EPF) found in Brazil. Environmental and genetic factors are thought to contribute to the disease, which is associated with pathogenic IgG4 autoantibodies against the desmosomal cadherin desmoglein 1. In this issue, as an additional framework to understand autoimmune mechanisms in EPF, Flores et al. have investigated whether fogo selvagem patients and healthy individuals from endemic areas develop autoantibody responses against other desmosomal cadherins and E-cadherin.
Resumo:
High-dose intravenous immunoglobulin (IVIg) preparations are used currently for the treatment of autoimmune or inflammatory diseases. Despite numerous studies demonstrating efficacy, the precise mode of action of IVIg remains unclear. Paradoxically, IgG can exert both pro- and anti-inflammatory activities, depending on its concentration. The proinflammatory activity of low-dose IVIg requires complement activation or binding of the Fc fragment of IgG to IgG-specific receptors (FcgammaR) on innate immune effector cells. In contrast, when administered in high concentrations, IVIg has anti-inflammatory properties. How this anti-inflammatory effect is mediated has not yet been elucidated fully, and several mutually non-exclusive mechanisms have been proposed. This paper represents the proceedings of a session entitled 'IVIg--Understanding properties and mechanisms' at the 6th International Immunoglobulin Symposium that was held in Interlaken on 26-28 March 2009. The presentations addressed how IgG may affect the cellular compartment, evidence for IVIg-mediated scavenging of complement fragments, the role of the dimeric fraction of IVIg, the anti-inflammatory properties of the minor fraction of sialylated IgG molecules, and the genetic organization and variation in FcgammaRs. These findings demonstrate the considerable progress that has been made in understanding the mechanisms of action of IVIgs, and may influence future perspectives in the field of Ig therapy.
Resumo:
Between 2004 and 2007, NGOs, community based organisations and private investors promoted jatropha in Kenya with the aim of generating additional income and producing biofuel for rural development. By 2008 it became gradually evident that jatropha plantations (both mono- and intercropping) are uneconomical and risky due to competition for land and labour with food crops. Cultivation of jatropha hedges was found to have better chances of economic success and to present only little risks for the adopting farmers. Still, after 2008 a number of farmers went on adopting jatropha in plots rather than as hedges. It is hypothesised that lack of awareness about the low economic prospects of jatropha plantations was the main reason for continued adoption, and that smallholder farmers with higher resource endowments mainly ventured into its cultivation. In this study we provide an empirical basis for understanding the role of households' capital assets in taking up new livelihood strategies by smallholder farmers in three rural districts in Kenya. For that purpose, we assess the motivation and enabling factors that led to the adoption of jatropha as a new livelihood strategy, as well as the context in which promotion and adoption took place. A household survey was conducted in 2010, using a structured questionnaire, to collect information on household characteristics and capital asset endowment. Data were analysed using descriptive statistics and non-parametric statistical tests. We established that access to additional income and own energy supply were the main motivation for adoption of jatropha, and that financial capital assets do not necessarily have a positive influence on adoption as hypothesised. Further, we found that the main challenges that adopting farmers faced were lack of access to information on good management practices and lack of a reliable market. We conclude that continued adoption of on-farm jatropha after 2008 is a result of lacking awareness about the low economic value of this production type. We recommend abandoning on-farm production of jatropha until improved seed material and locally adapted agronomic knowledge about jatropha cultivation becomes available and its production becomes economically competitive.
Resumo:
Among the many cell types that may prove useful to regenerative medicine, mounting evidence suggests that human term placenta-derived cells will join the list of significant contributors. In making new cell therapy-based strategies a clinical reality, it is fundamental that no a priori claims are made regarding which cell source is preferable for a particular therapeutic application. Rather, ongoing comparisons of the potentiality and characteristics of cells from different sources should be made to promote constant improvement in cell therapies, and such comparisons will likely show that individually tailored cells can address disease-specific clinical needs. The principle underlying such an approach is resistance to the notion that comprehensive characterization of any cell type has been achieved, neither in terms of phenotype nor risks-to-benefits ratio. Tailoring cell therapy approaches to specific conditions also requires an understanding of basic disease mechanisms and close collaboration between translational researchers and clinicians, to identify current needs and shortcomings in existing treatments. To this end, the international workshop entitled "Placenta-derived stem cells for treatment of inflammatory diseases: moving toward clinical application" was held in Brescia, Italy, in March 2009, and aimed to harness an understanding of basic inflammatory mechanisms inherent in human diseases with updated findings regarding biological and therapeutic properties of human placenta-derived cells, with particular emphasis on their potential for treating inflammatory diseases. Finally, steps required to allow their future clinical application according to regulatory aspects including good manufacturing practice (GMP) were also considered. In September 2009, the International Placenta Stem Cell Society (IPLASS) was founded to help strengthen the research network in this field.
Resumo:
Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."
Resumo:
Until today the role of oxygen in the development of the fetus remains controversially discussed. It is still believed that lack of oxygen in utero might be responsible for some of the known congenital cardiovascular malformations. Over the last two decades detailed research has given us new insights and a better understanding of embryogenesis and fetal growth. But most importantly it has repeatedly demonstrated that oxygen only plays a minor role in the early intrauterine development. After organogenesis has taken place hypoxia becomes more important during the second and third trimester of pregnancy when fetal growth occurs. This review will briefly adress causes and mechanisms leading to intrauterine hypoxia and their impact on the fetal cardiovascular system.
Resumo:
Background Since late 2003, the highly pathogenic influenza A H5N1 had initiated several outbreak waves that swept across the Eurasia and Africa continents. Getting prepared for reassortment or mutation of H5N1 viruses has become a global priority. Although the spreading mechanism of H5N1 has been studied from different perspectives, its main transmission agents and spread route problems remain unsolved. Methodology/Principal Findings Based on a compilation of the time and location of global H5N1 outbreaks from November 2003 to December 2006, we report an interdisciplinary effort that combines the geospatial informatics approach with a bioinformatics approach to form an improved understanding on the transmission mechanisms of H5N1 virus. Through a spherical coordinate based analysis, which is not conventionally done in geographical analyses, we reveal obvious spatial and temporal clusters of global H5N1 cases on different scales, which we consider to be associated with two different transmission modes of H5N1 viruses. Then through an interdisciplinary study of both geographic and phylogenetic analysis, we obtain a H5N1 spreading route map. Our results provide insight on competing hypotheses as to which avian hosts are responsible for the spread of H5N1. Conclusions/Significance We found that although South China and Southeast Asia may be the virus pool of avian flu, East Siberia may be the source of the H5N1 epidemic. The concentration of migratory birds from different places increases the possibility of gene mutation. Special attention should be paid to East Siberia, Middle Siberia and South China for improved surveillance of H5N1 viruses and monitoring of migratory birds.
Resumo:
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Resumo:
Eosinophil extracellular traps (EETs) are part of the innate immune response and are seen in multiple infectious, allergic, and autoimmune eosinophilic diseases. EETs are composed of a meshwork of DNA fibers and eosinophil granule proteins, such as major basic protein (MBP) and eosinophil cationic protein (ECP). Interestingly, the DNA within the EETs appears to have its origin in the mitochondria of eosinophils, which had released most their mitochondrial DNA, but were still viable, exhibiting no evidence of a reduced life span. Multiple eosinophil activation mechanisms are represented, whereby toll-like, cytokine, chemokine, and adhesion receptors can all initiate transmembrane signal transduction processes leading to the formation of EETs. One of the key signaling events required for DNA release is the activation of the NADPH oxidase. Here, we review recent progress made in the understanding the molecular mechanisms involved in DNA and granule protein release, discuss the presence of EETs in disease, speculate on their potential role(s) in pathogenesis, and compare available data on other DNA-releasing cells, particularly neutrophils.
Pulmonary hypertension in high-altitude dwellers: novel mechanisms, unsuspected predisposing factors
Resumo:
Studies of high-altitude populations, and in particular of maladapted subgroups, may provide important insight into underlying mechanisms involved in the pathogenesis of hypoxemia-related disease states in general. Over the past decade, studies involving short-term hypoxic exposure have greatly advanced our knowledge regarding underlying mechanisms and predisposing events of hypoxic pulmonary hypertension. Studies in high altitude pulmonary edema (HAPE)-prone subjects, a condition characterized by exaggerated hypoxic pulmonary hypertension, have provided evidence for the central role of pulmonary vascular endothelial and respiratory epithelial nitric oxide (NO) for pulmonary artery pressure homeostasis. More recently, it has been shown that pathological events during the perinatal period (possibly by impairing pulmonary NO synthesis), predispose to exaggerated hypoxic pulmonary hypertension later in life. In an attempt to translate some of this new knowledge to the understanding of underlying mechanisms and predisposing events of chronic hypoxic pulmonary hypertension, we have recently initiated a series of studies among high-risk subpopulations (experiments of nature) of high-altitude dwellers. These studies have allowed to identify novel risk factors and underlying mechanisms that may predispose to sustained hypoxic pulmonary hypertension. The aim of this article is to briefly review this new data, and demonstrate that insufficient NO synthesis/bioavailability, possibly related in part to augmented oxidative stress, may represent an important underlying mechanism predisposing to pulmonary hypertension in high-altitude dwellers.
Resumo:
The available literature consistently shows increased pain sensitivity after sensory stimulation of healthy tissues in patients who have various chronic pain conditions. This indicates a state of hypersensitivity of the CNS that amplifies the nociceptive input arising from damaged tissues. Experimental data indicate that central hypersensitivity is probably induced primarily by nociceptive input arising from a diseased tissue. In patients, imbalance of descending modulatory systems connected with psychologic distress may play a role. There is experimental support in animal studies for the persistence of central hypersensitivity after complete resolution of tissue damage. This is particularly true for neuropathic pain conditions, whereby potentially irreversible plasticity changes of the CNS have been documented in animal studies. Whether such changes are present in musculoskeletal pain states is at present uncertain. Despite the likely importance of central hypersensitivity in the pathophysiology of chronic pain, this mechanism should not be used to justify the lack of understanding on the anatomic origin of the pain complaints in several pain syndromes, which is mostly due to limitations of the available diagnostic tools. Treatment strategies for central hypersensitivity in patients have been investigated mostly in neuropathic pain states. Possible therapy modalities for central hypersensitivity in chronic pain of musculoskeletal origin are largely unexplored. The limited evidence available and everyday practice show, at best, modest efficacy of the available treatment modalities for central hypersensitivity. The gap between basic knowledge and clinical benefits remains large and should stimulate further intensive research.