27 resultados para Two-Hybrid System Techniques
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this "MYTH 2.0" system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes.
Resumo:
Purpose: Traditionally, the proximal isovelocity surface area (PISA) is based on the assumption of a single hemisphere (hemispheric PISA), but this technique has not been validated for the quantification of mitral regurgitation (MR) with multiple jets. Methods: The left heart simulator was actuated by a pulsatile pump at various stroke amplitudes. The regurgitant volume (Rvol) passing through the mitral valve phantoms with single and double regurgitant orifices of varying size and interspace was quantified by a flowmeter as reference technique. Color Doppler 3-D full-volumes were obtained, and Rvol were derived from 2-D PISA surfaces on the basis of hemispheric and hemicylindric assumption with one base (partial hemicylindric PISA) or 2 bases (total hemicylindric PISA). Results: 72 regurgitant volumes (Rvol range: 8 to 76 ml/beat) were obtained. Hemispheric PISA Rvol correlated well with reference Rvol by one orifice (R²=0.97; bias -2.7±3.2ml), but less by ≥ one orifice (R²=0.89). When a fusion of two PISAs occured, addition of two hemispheric PISA overestimated Rvol (bias 9.1±12.2ml, fig.1), and single hemispheric PISA underestimated Rvol (bias -12.4±4.9ml). If an integrated approach was used (hemispheric in single orifice, total hemicylindric in two non-fused PISAs and partial hemicylindric in two fused PISAs), the correlation was R²=0.95, bias -1.6±5.6ml (fig.2). In the ROC analysis, the cutoff to detect ≥ moderate-to-severe Rvol (≥45ml) was 42ml (AUC 0.99, sens. 100%, spec. 93%). Conclusions: In MR with two regurgitant jets, the 2-D hemicylindric assumption of the PISA offers a better quantification of Rvol than the hemispheric assumption. Quantification of MR using 2-D PISA requires an integrated approach that considers number of regurgitant orifices and fusion of the PISAs.
Resumo:
We have used the yeast three-hybrid system in a positive selection for mutants of the human histone hairpin-binding protein (HBP) capable of interacting with non-canonical hairpins and in a negative selection for loss-of-binding mutants. Interestingly, all mutations from the positive selection are located in the N- and C-terminal regions flanking a minimal RNA-binding domain (RBD) previously defined between amino acids 126 and 198. Further, in vitro binding studies demonstrate that the RBD, which shows no obvious similarity to other RNA-binding motifs, has a relaxed sequence specificity compared to full-length HBP, allowing it to bind to mutant hairpin RNAs not normally found in histone genes. These findings indicate that the sequences flanking the RBD are important for restricting binding to the highly conserved histone hairpin structure. Among the loss-of-binding mutations, about half are nonsense mutations distributed throughout the N-terminal part and the RBD whereas the other half are missense mutations restricted to the RBD. Whereas the nonsense mutations permit a more precise definition of the C-terminal border of the RBD, the missense mutations identify critical residues for RNA binding within the RBD.
Resumo:
Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu(+) to the CopY repressor, thereby releasing its bound zinc and abolishing repressor-DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro. Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis.
Resumo:
FGFRL1 is a member of the fibroblast growth factor receptor family. It plays an essential role during branching morphogenesis of the metanephric kidneys, as mice with a targeted deletion of the Fgfrl1 gene show severe kidney dysplasia. Here we used the yeast two-hybrid system to demonstrate that FGFRL1 binds with its C-terminal, histidine-rich domain to Spred1 and to other proteins of the Sprouty/Spred family. Members of this family are known to act as negative regulators of the Ras/Raf/Erk signaling pathway. Truncation experiments further showed that FGFRL1 interacts with the SPR domain of Spred1, a domain that is shared by all members of the Sprouty/Spred family. The interaction could be verified by coprecipitation of the interaction partners from solution and by codistribution at the cell membrane of COS1 and HEK293 cells. Interestingly, Spred1 increased the retention time of FGFRL1 at the plasma membrane where the receptor might interact with ligands. FGFRL1 and members of the Sprouty/Spred family belong to the FGF synexpression group, which also includes FGF3, FGF8, Sef and Isthmin. It is conceivable that FGFRL1, Sef and some Sprouty/Spred proteins work in concert to control growth factor signaling during branching morphogenesis of the kidneys and other organs.
Resumo:
Zyxin is a versatile component of focal adhesions in eukaryotic cells. Here we describe a novel binding partner of zyxin, which we have named LIM-nebulette. LIM-nebulette is an alternative splice variant of the sarcomeric protein nebulette, which, in contrast to nebulette, is expressed in non-muscle cells. It displays a modular structure with an N-terminal LIM domain, three nebulin-like repeats, and a C-terminal SH3 domain and shows high similarity to another cytoskeletal protein, Lasp-1 (LIM and SH3 protein-1). Co-precipitation studies and results obtained with the two-hybrid system demonstrate that LIM-nebulette and Lasp-1 interact specifically with zyxin. Moreover, the SH3 domain from LIM-nebulette is both necessary and sufficient for zyxin binding. The SH3 domains from Lasp-1 and nebulin can also interact with zyxin, but the SH3 domains from more distantly related proteins such as vinexin and sorting nexin 9 do not. On the other hand, the binding site in zyxin is situated at the extreme N terminus as shown by site-directed mutagenesis. LIM-nebulette and Lasp-1 use the same linear binding motif. This motif shows some similarity to a class II binding site but does not contain the classical PXXP sequence. LIM-nebulette reveals a subcellular distribution at focal adhesions similar to Lasp-1. Thus, LIM-nebulette, Lasp-1, and zyxin may play an important role in the organization of focal adhesions.
Resumo:
Renal reabsorption of inorganic phosphate (P(i)) is mainly mediated by the Na(+)-dependent P(i)-cotransporter NaPi-IIa that is expressed in the brush-border membrane (BBM) of renal proximal tubules. Regulation and apical expression of NaPi-IIa are known to depend on a network of interacting proteins. Most of the interacting partners identified so far associate with the COOH-terminal PDZ-binding motif (TRL) of NaPi-IIa. In this study GABA(A) receptor-associated protein (GABARAP) was identified as a novel interacting partner of NaPi-IIa applying a membrane yeast-two-hybrid system (MYTH 2.0) to screen a mouse kidney library with the TRL-truncated cotransporter as bait. GABARAP mRNA and protein are present in renal tubules, and the interaction of NaPi-IIa and GABARAP was confirmed by using glutathione S-transferase pulldowns from BBM and coimmunoprecipitations from transfected HEK293 cells. Amino acids 36-68 of GABARAP were identified as the determinant for the described interaction. The in vivo effects of this interaction were studied in a murine model. GABARAP(-/-) mice have reduced urinary excretion of P(i), higher Na(+)-dependent (32)P(i) uptake in BBM vesicles, and increased expression of NaPi-IIa in renal BBM compared with GABARAP(+/+) mice. The expression of Na(+)/H(+) exchanger regulatory factor (NHERF)1, an important scaffold for the apical expression of NaPi-IIa, is also increased in GABARAP(-/-) mice. The absence of GABARAP does not interfere with the regulation of the cotransporter by either parathyroid hormone or acute changes of dietary P(i) content.
Resumo:
BACKGROUND The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.
Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin
Resumo:
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.
Resumo:
Plectin is a versatile cytolinker of the plakin family conferring cell resilience to mechanical stress in stratified epithelia and muscles. It acts as a critical organizer of the cytoskeletal system by tethering various intermediate filament (IF) networks through its C-terminal IF-binding domain (IFBD). Mutations affecting the IFBD cause devastating human diseases. Here, we show that serine 4642, which is located in the extreme C-terminus of plectin, is phosphorylated in different cell lines. Phosphorylation of S4642 decreased the ability of plectin IFBD to associate with various IFs, as assessed by immunofluorescence microscopy and cell fractionation studies, as well as in yeast two-hybrid assays. Plectin phosphorylated at S4642 was reduced at sites of IF network anchorage along cell-substrate contacts in both skin and cultured keratinocytes. Treatment of SK-MEL-2 and HeLa cells with okadaic acid increased plectin S4642 phosphorylation, suggesting that protein phosphatase 2A dephosphorylates this residue. Moreover, plectin S4642 phosphorylation was enhanced after cell treatment with EGF, phorbol ester, sorbitol and 8-bromo-cyclic AMP, as well as during wound healing and protease-mediated cell detachment. Using selective protein kinase inhibitors, we identified two different kinases that modulate the phosphorylation of plectin S4642 in HeLa cells: MNK2, which is downstream of the ERK1/2-dependent MAPK cascade, and PKA. Our study indicates that phosphorylation of S4642 has an important regulatory role in the interaction of plectin with IFs and identifies a novel link between MNK2 and the cytoskeleton.
Resumo:
The high copy dTph1 transposon system of Petunia (Solanaceae) is one of the most powerful insertion mutagens in plants, but its activity cannot be controlled in the commonly used mutator strains. We analysed the regulation of dTph1 activity by QTL analysis in recombinant inbred lines of the mutator strain W138 and a wild species (P. integrifolia spp. inflata). Two genetic factors were identified that control dTph1 transposition. One corresponded to the ACT1 locus on chromosome I. A second, previously undescribed locus ACT2 mapped on chromosome V. As a 6-cM introgression in W138, the P. i. inflata act1(S6) allele behaved as a single recessive locus that fully eliminated transposition of all dTph1 elements in all stages of plant development and in a heritable fashion. Weak dTph1 activity was restored in act1(S6)/ACT2(S6) double introgression lines, indicating that the P. i. inflata allele at ACT2 conferred a low level of transposition. Thus, the act1(S6) allele is useful for simple and predictable control of transposition of the entire dTph1 family when introgressed into an ultra-high copy W138 mutator strain. We demonstrate the use of the ACT1(W138)/act1(S6) allele pair in a two-element dTph1 transposition system by producing 10 000 unique and fixed dTph1 insertions in a population of 1250 co-isogenic lines. This Petunia system produces the highest per plant insertion number of any known two-element system, providing a powerful and logistically simple tool for transposon mutagenesis of qualitative as well as quantitative traits.
Resumo:
Amawaka ([ɑmɨ̃ˈwɐkɑ]) is a highly endangered and underdocumented tonal language of the Headwaters (Fleck 2011) subgroup of the Panoan family in the Southwest Amazon Basin, spoken by approximately 200 people. Undocumented phonetic and phonological phenomena of Amawaka include its tonal structure, both in terms of surface realizations and the patterns underlying these realizations. Original audiovisual data from the author’s fieldwork in various Amawaka communities at the Peru-Brazil border will illuminate the as-yet obscure tonal systematicity of the language. Unlike other elements, monosyllabic bimoraic phonological nominal words with long vowels display variation in their surface realization. All the words with the open back unrounded /ɑ/, like /ˈkɑ̀:/ (patarashca, a traditional Amazonian dish), /ˈnɑ̀:/ “mestizo” etc. [with the exception of /ˈtɑ:/ “reed”, which surfaces with either a H or L tone] bear a low tone in isolation. This realization contrasts with all the encountered nominal monosyllables with vowels from the close and close-mid front and central spectrum /i, ɘ, ɨ, ɨ̃/, which clearly surface as high tone words in isolation, for example /ˈmɨ̃́:/ (a clay-lick for animals), /ˈwí:/ “Anopheles, spp. mosquito”. Monosyllables with close-mid back rounded /o/ have a less restrictive pitch that varies among speakers from low to high realizations, and sometimes even across the speech tokens from an individual speaker, e.g. /wó:/ or /wō:/ “hair”, /ɧō:/ or /ɧò:/ (a type of tarantula). Phrasal tonal phonology is more complex, when these three kinds of monosyllables appear in larger noun phrases. Some retain the same surface tones as their isolation form, while others seem to vary freely in their surface realization, e.g. /ˈtɘ́:.nɑ̀:/ or /ˈtɘ́:.nɑ́:/ ‘one mestizo’. Yet other monosyllables, e.g. /mɑ̀:/, exhibit a falling tone when preceded by a H syllable, suggesting probably latent tone sandhi phenomena, e.g /ˈtɘ́:.mɑ̂:/ (one clay-lick for parrots). In disyllabic, trisyllabic and quadrisyllabic nouns, tonal and stress patterns generally seem to be more consistent and tend to be retained both in isolation and in larger intonational phrases. Disyllabic nouns, for instance, surface as L-H or L-L when a glottal stop is in coda position. The association of L with a glottal stop is a feature that occurs in other Panoan languages as well, like Capanahua (Loos 1969), and more generally it is an areal feature, found in other parts of Amazonia (Hyman 2010). So, tone has significant interactions with the glottal stop and glottalization, which generally co-occurs with L. The data above suggest that the underlying tonal system of Amawaka is much more complex than the privative one-tone analysis (/H/ vs. Ø, i.e. lack of tone) that was proposed by Russell and Russell (1959). Evidence from field data suggests either an equipollent (Hyman 2010) two-tone opposition between /H/ and /L/, or a hybrid system, with both equipollent and privative features; that is, /H/ vs. /L/ vs. either Ø or /M/. This first systematic description of Amawaka tone, in conjunction with ongoing research, is poised to address broader questions concerning interrelationships between surface/underlying tone and other suprasegmental features, such as nasality, metrical stress, and intonation. References Fleck, David W. 2011. Panoan languages and linguistics. In Javier Ruedas and David W. Fleck (Eds.), Panoan Histories and Interethnic Identities, To appear. Hyman, Larry. 2010. Amazonia and the typology of tone systems. Presented at the conference Amazonicas III: The structure of the Amazonian languages. Bogotá. Loos, Eugene E. 1969. The phonology of Capanahua and its grammatical basis. Norman: SIL and U. Oklahoma. Russell, Robert & Dolores. 1959. Syntactotonemics in Amahuaca (Pano). Série Lingüistica Especial, 128-167. Publicaçoes do Museu Nacional, Rio de Janeiro, Brasil.
Resumo:
Amawaka ([ɑmɨ̃ˈwɐkɑ]) is a highly endangered and underdocumented tonal language of the Headwaters (Fleck 2011) subgroup of the Panoan family in the Southwest Amazon Basin, spoken by approximately 200 people. Undocumented phonetic and phonological phenomena of Amawaka include its tonal structure, both in terms of surface realizations and the patterns underlying these realizations. Original audiovisual data from the author’s fieldwork in various Amawaka communities at the Peru-Brazil border will illuminate the as-yet obscure tonal systematicity of the language. Unlike other elements, monosyllabic bimoraic phonological nominal words with long vowels display variation in their surface realization. All the words with the open back unrounded /ɑ/, like /ˈkɑ̀:/ (a traditional Amazonian dish), /ˈnɑ̀:/ “mestizo” etc. [with the exception of /ˈtɑ:/ “reed”, which surfaces with either a H or L tone] bear a low tone in isolation. This realization contrasts with all the encountered nominal monosyllables with vowels from the close and close-mid front and central spectrum /i, ɘ, ɨ, ɨ̃/, which clearly surface as high tone words in isolation, for example /ˈmɨ̃́:/ (a clay-lick for animals), /ˈwí:/ “Anopheles, spp. mosquito”. Monosyllables with close-mid back rounded /o/ have a less restrictive pitch that varies among speakers from low to high realizations, and sometimes even across the speech tokens from an individual speaker, e.g. /wó:/ or /wō:/ “hair”, /ɧō:/ or /ɧò:/ (a type of tarantula). Phrasal tonal phonology is more complex, when these three kinds of monosyllables appear in larger noun phrases. Some retain the same surface tones as their isolation form, while others seem to vary freely in their surface realization, e.g. /ˈtɘ́:.nɑ̀:/ or /ˈtɘ́:.nɑ́:/ ‘one mestizo’. Yet other monosyllables, e.g. /mɑ̀:/, exhibit a falling tone when preceded by a H syllable, suggesting probably latent tone sandhi phenomena, e.g /ˈtɘ́:.mɑ̂:/ (one clay-lick for parrots). In disyllabic, trisyllabic and quadrisyllabic nouns, tonal and stress patterns generally seem to be more consistent and tend to be retained both in isolation and in larger intonational phrases. Disyllabic nouns, for instance, surface as L-H or L-L when a glottal stop is in coda position. The association of L with a glottal stop is a feature that occurs in other Panoan languages as well, like Capanahua (Loos 1969), and more generally it is an areal feature, found in other parts of Amazonia (Hyman 2010). So, tone has significant interactions with the glottal stop and glottalization, which generally co-occurs with L. The data above suggest that the underlying tonal system of Amawaka is much more complex than the privative one-tone analysis (/H/ vs. Ø, i.e. lack of tone) that was proposed by Russell and Russell (1959). Evidence from field data suggests either an equipollent (Hyman 2010) two-tone opposition between /H/ and /L/, or a hybrid system, with both equipollent and privative features; that is, /H/ vs. /L/ vs. either Ø or /M/. This first systematic description of Amawaka tone, in conjunction with ongoing research, is poised to address broader questions concerning interrelationships between surface/underlying tone and other suprasegmental features, such as nasality, metrical stress, and intonation. References Fleck, David W. 2011. Panoan languages and linguistics. In Javier Ruedas and David W. Fleck (Eds.), Panoan Histories and Interethnic Identities, To appear. Hyman, Larry. 2010. Amazonia and the typology of tone systems. Presented at the conference Amazonicas III: The structure of the Amazonian languages. Bogotá. Loos, Eugene E. 1969. The phonology of Capanahua and its grammatical basis. Norman: SIL and U. Oklahoma. Russell, Robert & Dolores. 1959. Syntactotonemics in Amahuaca (Pano). Série Lingüistica Especial, 128-167. Publicaçoes do Museu Nacional, Rio de Janeiro, Brasil.
Resumo:
Nephrogenic dopamine is a potent natriuretic paracrine/autocrine hormone that is central for mammalian sodium homeostasis. In the renal proximal tubule, dopamine induces natriuresis partly via inhibition of the sodium/proton exchanger NHE3. The signal transduction pathways and mechanisms by which dopamine inhibits NHE3 are complex and incompletely understood. This manuscript describes the role of the serine/threonine protein phosphatase 2A (PP2A) in the regulation of NHE3 by dopamine. The PP2A regulatory subunit B56 delta (coded by the Ppp2r5d gene) directly associates with more than one region of the carboxy-terminal hydrophilic putative cytoplasmic domain of NHE3 (NHE3-cyto), as demonstrated by yeast-two-hybrid, co-immunoprecipitation, blot overlay and in vitro pull-down assays. Phosphorylated NHE3-cyto is a substrate for purified PP2A in an in vitro dephosphorylation reaction. In cultured renal cells, inhibition of PP2A by either okadaic acid or by overexpression of the simian virus 40 (SV40) small t antigen blocks the ability of dopamine to inhibit NHE3 activity and to reduce surface NHE3 protein. Dopamine-induced NHE3 redistribution is also blocked by okadaic acid ex vivo in rat kidney cortical slices. These studies demonstrate that PP2A is an integral and critical participant in the signal transduction pathway between dopamine receptor activation and NHE3 inhibition. Key words: Natriuresis, Sodium transport, Signal transduction.