25 resultados para Tubules séminifères
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This report describes the occurrence of renal papillary cystic adenomas and adenocarcinomas in oscars Astronotus ocellatus Cuvier, 1829. Samples from 5 oscars with abdominal swelling were collected between 1996 and 2004 and compared to a published case from the USA. Macroscopically, all cases revealed a large, well-demarcated, greyish-brown nodular mass in a retroperitoneal position within the body cavity, and originating from the posterior kidney. Histologically, these neoplasms were composed of epithelial cells, which were arranged in papillary cystic tubular structures and partly covered by cilia. In this study, microscopic and ultrastructural examination confirmed that the origin of the neoplasm was the proximal tubules of the kidney.
Resumo:
OBJECTIVES: To develop a minimally destructive technique for removing the smear layer produced by cutting and polishing specimens of dentine prepared for use in experimental studies, e.g. on occlusion of dentinal tubules by oral health products. The aim was to avoid the damage caused by conventional techniques utilising short exposures to solutions with very low pH. METHODS: Two acetate buffers, pH 5.5, containing different concentrations of calcium and phosphate, with -log(ion activity product with respect to hydroxyapatite) (pI(HA)) of 55 or 56, were tested on slices of dentine using scanning electron microscopy (SEM). RESULTS: A solution which, from previous work, was slightly undersaturated with respect to dentine mineral, with a pI(HA) of 56, was found to remove smear layers produced by cutting and/or polishing after 15 min. However, to reliably remove debris occluding the tubules an exposure time of 2h, followed by brief ultrasonication, was necessary. After 2h treatment with this buffer, only a small amount of demineralization of the surface was detectable by SEM, while calcium and phosphorus were detectable by X-ray dispersive spectroscopy. CONCLUSION: It is possible to remove smear layers, and to open dentinal tubules, by a reasonably short exposure to an acidic buffer which is undersaturated with respect to dentine mineral.
Resumo:
Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the 'nephronophthisis-MCKD complex', a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney disease.
Resumo:
To enhance understanding of the metabolic indicators of type 2 diabetes mellitus (T2DM) disease pathogenesis and progression, the urinary metabolomes of well characterized rhesus macaques (normal or spontaneously and naturally diabetic) were examined. High-resolution ultra-performance liquid chromatography coupled with the accurate mass determination of time-of-flight mass spectrometry was used to analyze spot urine samples from normal (n = 10) and T2DM (n = 11) male monkeys. The machine-learning algorithm random forests classified urine samples as either from normal or T2DM monkeys. The metabolites important for developing the classifier were further examined for their biological significance. Random forests models had a misclassification error of less than 5%. Metabolites were identified based on accurate masses (<10 ppm) and confirmed by tandem mass spectrometry of authentic compounds. Urinary compounds significantly increased (p < 0.05) in the T2DM when compared with the normal group included glycine betaine (9-fold), citric acid (2.8-fold), kynurenic acid (1.8-fold), glucose (68-fold), and pipecolic acid (6.5-fold). When compared with the conventional definition of T2DM, the metabolites were also useful in defining the T2DM condition, and the urinary elevations in glycine betaine and pipecolic acid (as well as proline) indicated defective re-absorption in the kidney proximal tubules by SLC6A20, a Na(+)-dependent transporter. The mRNA levels of SLC6A20 were significantly reduced in the kidneys of monkeys with T2DM. These observations were validated in the db/db mouse model of T2DM. This study provides convincing evidence of the power of metabolomics for identifying functional changes at many levels in the omics pipeline.
Resumo:
This study evaluated (1) the micromorphology by scanning electron microscopy (SEM) and (2) the adhesive performance by microtensile bond strength (μTBS) of diamond bur-treated dentin compared to Er:YAG laser-treated dentin of human primary teeth. (1) For qualitative SEM evaluation, dentin of 18 second primary molars (n = 3/method) was treated with either diamond bur as a control (group 1a: 40 μm diamond bur only (clinical situation); group 1b: grinding + 40 μm diamond bur) or with Er:YAG laser (group 2a (clinical situation, manufacturer's settings): 200 mJ/25 Hz (5 W) + 100 mJ/35 Hz (3.5 W) laser only; group 2b (experimental setting "high"): grinding + 400 mJ/20 Hz (8 W); group 2c (manufacturer's setting "finishing"): grinding + 100 mJ/35 Hz (3.5 W); group 2d (experimental setting "low"): grinding + 50 mJ/35 Hz (1.75 W)). (2) For evaluation of adhesive performance, 64 second primary molars were divided into four groups and treated as described for group 1b and groups 2b/c/d (n = 16/method), and μTBS of Clearfil SE/Clearfil Majesty Esthetic to dentin was measured. The SEM micrographs were qualitatively analyzed. The μTBS values were compared with a Kruskal-Wallis test. The significance level was set at α = 0.05. SEM micrographs showed the typical micromorphologies with a smear layer for the diamond bur groups and open dentin tubules for all laser-treated groups. However, in group 2d, the laser beam had insufficiently irradiated the dentin area, rendering the underlying ground surface partly visible. There were no statistically significant differences between μTBS values of the four groups (p = 0.394). This suggests that Er:YAG laser treatment of dentin of primary molars provides bond strengths similar to those obtained following diamond bur treatment.
Resumo:
A retrospective review of mortality records of Key Largo woodrats (Neotoma floridana smalli) in a captive breeding program revealed chronic renal disease in 5 of 6 woodrats older than 4 years of age. Two of the 5 woodrats with chronic renal disease also had clinical evidence of diabetes mellitus. Kidneys from all 5 woodrats were examined via light microscopy, histochemical staining, immunohistochemical staining, and transmission electron microscopy. The dietary histories of the affected animals were examined as well. The most striking histopathologic abnormality in the affected kidneys was the presence of large protein casts within cortical and medullary tubules in combination with lesions of membranous glomerulopathy and glomerulosclerosis. Transmission electron microscopy revealed thickening and undulation of the tubular and glomerular mesangial basement membranes with the variable presence of electron-dense deposits within the capillary endothelial basement membrane. Patchy glomerular immunoreactivity for IgG was noted in 2 cases, but IgA and IgM immunoreactivity were not present. The pathologic changes in the kidneys of the Key Largo woodrats mirrored many of the features of chronic progressive nephropathy commonly diagnosed in laboratory rats. Woodrats in the captive population were fed an ad libitum high-protein diet similar to diets that have been shown in laboratory rats to exacerbate the development and progression of chronic progressive nephropathy. It is concluded that Key Largo woodrats develop glomerulonephropathy with features similar to chronic progressive nephropathy described in laboratory rats. Age, concomitant disease, and dietary factors may contribute to the development and severity of this potentially age-limiting disease in Key Largo woodrats.
Resumo:
Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.
Resumo:
The zinc endopeptidase meprin (EC 3.4.24.18) is expressed in brush border membranes of intestine and kidney tubules, intestinal leukocytes, and certain cancer cells, suggesting a role in epithelial differentiation and cell migration. Here we show by RT-PCR and immunoblotting that meprin is also expressed in human skin. As visualized by immunohistochemistry, the two meprin subunits are localized in separate cell layers of the human epidermis. Meprin alpha is expressed in the stratum basale, whereas meprin beta is found in cells of the stratum granulosum just beneath the stratum corneum. In hyperproliferative epidermis such as in psoriasis vulgaris, meprin alpha showed a marked shift of expression from the basal to the uppermost layers of the epidermis. The expression patterns suggest distinct functions for the two subunits in skin. This assumption is supported by diverse effects of recombinant meprin alpha and beta on human adult low-calcium high-temperature keratinocytes. Here, beta induced a dramatic change in cell morphology and reduced the cell number, indicating a function in terminal differentiation, whereas meprin alpha did not affect cell viability, and may play a role in basal keratinocyte proliferation.
Resumo:
A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick-walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood-gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood-gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 +/- 0.001 cm(3) with an air space surface area of 4.85 +/- 0.43 cm(2). Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight-related diffusion capacity was 2.52 +/- 0.56 mL O(2) min(-1) kg(-1). The epidermis was poorly developed, and measured 29.97 +/- 4.88 microm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 +/- 0.98 microm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange.
Resumo:
BACKGROUND: Meprin (EC 3.4.24.18), an astacin-like metalloprotease, is expressed in the epithelium of the intestine and kidney tubules and has been related to cancer, but the mechanistic links are unknown. METHODOLOGY/PRINCIPAL FINDINGS: We used MDCK and Caco-2 cells stably transfected with meprin alpha and or meprin beta to establish models of renal and intestinal epithelial cells expressing this protease at physiological levels. In both models E-cadherin was cleaved, producing a cell-associated 97-kDa E-cadherin fragment, which was enhanced upon activation of the meprin zymogen and reduced in the presence of a meprin inhibitor. The cleavage site was localized in the extracellular domain adjacent to the plasma membrane. In vitro assays with purified components showed that the 97-kDa fragment was specifically generated by meprin beta, but not by ADAM-10 or MMP-7. Concomitantly with E-cadherin cleavage and degradation of the E-cadherin cytoplasmic tail, the plaque proteins beta-catenin and plakoglobin were processed by an intracellular protease, whereas alpha-catenin, which does not bind directly to E-cadherin, remained intact. Using confocal microscopy, we observed a partial colocalization of meprin beta and E-cadherin at lateral membranes of incompletely polarized cells at preconfluent or early confluent stages. Meprin beta-expressing cells displayed a reduced strength of cell-cell contacts and a significantly lower tendency to form multicellular aggregates. CONCLUSIONS/SIGNIFICANCE: By identifying E-cadherin as a substrate for meprin beta in a cellular context, this study reveals a novel biological role of this protease in epithelial cells. Our results suggest a crucial role for meprin beta in the control of adhesiveness via cleavage of E-cadherin with potential implications in a wide range of biological processes including epithelial barrier function and cancer progression.
Resumo:
Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial-mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors. Little attention has been paid to the possibility of a transformation of resident fibroblasts into myofibroblasts in renal fibrosis. Therefore we examined the fate of resident fibroblasts in the initial phase of renal fibrosis in the classical model of unilateral ureter obstruction (UUO) in the rat. Rats were perfusion-fixed on days 1, 2, 3 and 4 after ligature of the right ureter. Starting from 1 day of UUO an increasing expression of alpha-smooth muscle actin (alphaSMA) in resident fibroblasts was revealed by immunofluorescence and confirmed by the observation of bundles of microfilaments and webs of intermediate filaments in the electron microscope. Inversely, there was a decreased expression of 5'-nucleotidase (5'NT), a marker of renal cortical fibroblasts. The RER became more voluminous, suggesting an increased synthesis of matrix. Intercellular junctions, a characteristic feature of myofibroblasts, became more frequent. The mitotic activity in fibroblasts was strongly increased. Renal tubules underwent severe regressive changes but the cells retained their epithelial characteristics and there was no sign of EMT. In conclusion, after ureter ligature, resident peritubular fibroblasts proliferated and they showed progressive alterations, suggesting a transformation in myofibroblasts. Thus the resident fibroblasts likely play a central role in fibrosis in that model.
Resumo:
Cation/proton exchange has been recognized for decades in mammalian mitochondria, but the exchanger proteins have eluded identification. In this study, a cDNA from a human brain library, previously designated NHA2 in the genome, was cloned and characterized. The NHA2 transcript bears more similarity to prokaryotic than known eukaryotic sodium/proton exchangers, but it was found to be expressed in multiple mammalian organs and cultured cells. A mAb to NHA2 was generated and found to label an approximately 55-kD native protein in multiple tissues and cell lines. The specificity of this antibody was confirmed by demonstrating the loss of the native NHA2 band on immunoblots when cultured cells were treated with NHA2-specific small interfering RNA. Although NHA2 protein was detected in multiple organs, within each, its expression was restricted to specific cell types. In the kidney, co-localization with calbindin 28k and reverse transcription-PCR of microdissected tubules revealed that NHA2 is limited to the distal convoluted tubule. In cell lines, native NHA2 was localized both to the plasma membrane and to the intracellular compartment; immunogold electron microscopy of rat distal convoluted tubule demonstrated NHA2 predominantly but not exclusively on the inner mitochondrial membrane. Furthermore, co-sedimentation of NHA2 antigen and mitochondrial membranes was observed with differential centrifugation, and two mitochondrial markers co-localized with NHA2 in cultured cells. Regarding function, human NHA2 reversed the sodium/hydrogen exchanger-null phenotype when expressed in sodium/hydrogen exchanger-deficient yeast and restored the ability to defend high salinity in the presence of acidic extracellular pH. In summary, NHA2 is a ubiquitous mammalian sodium proton/exchanger that is restricted to the distal convoluted tubule in the kidney.
Resumo:
This study was undertaken to test whether recovery cycle measurements can provide useful information about the membrane potential of human muscle fibers. Multifiber responses to direct muscle stimulation through needle electrodes were recorded from the brachioradialis of healthy volunteers, and the latency changes measured as conditioning stimuli were applied at interstimulus intervals of 2-1000 ms. In all subjects, the relative refractory period (RRP), which lasted 3.27 +/- 0.45 ms (mean +/- SD, n = 12), was followed by a phase of supernormality, in which the velocity increased by 9.3 +/- 3.4% at 6.1 +/- 1.3 ms, and recovered over 1 s. A broad hump of additional supernormality was seen at around 100 ms. Extra conditioning stimuli had little effect on the early supernormality but increased the later component. The two phases of supernormality resembled early and late afterpotentials, attributable respectively to the passive decay of membrane charge and potassium accumulation in the t-tubules. Five minutes of ischemia progressively prolonged the RRP and reduced supernormality, confirming that these parameters are sensitive to membrane depolarization. Velocity recovery cycles may provide useful information about altered muscle membrane potential and t-tubule function in muscle disease. Muscle Nerve, 2008.
Resumo:
Renal reabsorption of inorganic phosphate (P(i)) is mainly mediated by the Na(+)-dependent P(i)-cotransporter NaPi-IIa that is expressed in the brush-border membrane (BBM) of renal proximal tubules. Regulation and apical expression of NaPi-IIa are known to depend on a network of interacting proteins. Most of the interacting partners identified so far associate with the COOH-terminal PDZ-binding motif (TRL) of NaPi-IIa. In this study GABA(A) receptor-associated protein (GABARAP) was identified as a novel interacting partner of NaPi-IIa applying a membrane yeast-two-hybrid system (MYTH 2.0) to screen a mouse kidney library with the TRL-truncated cotransporter as bait. GABARAP mRNA and protein are present in renal tubules, and the interaction of NaPi-IIa and GABARAP was confirmed by using glutathione S-transferase pulldowns from BBM and coimmunoprecipitations from transfected HEK293 cells. Amino acids 36-68 of GABARAP were identified as the determinant for the described interaction. The in vivo effects of this interaction were studied in a murine model. GABARAP(-/-) mice have reduced urinary excretion of P(i), higher Na(+)-dependent (32)P(i) uptake in BBM vesicles, and increased expression of NaPi-IIa in renal BBM compared with GABARAP(+/+) mice. The expression of Na(+)/H(+) exchanger regulatory factor (NHERF)1, an important scaffold for the apical expression of NaPi-IIa, is also increased in GABARAP(-/-) mice. The absence of GABARAP does not interfere with the regulation of the cotransporter by either parathyroid hormone or acute changes of dietary P(i) content.
Resumo:
OBJECTIVES The paper's aim is to review dentin hypersensitivity (DHS), discussing pain mechanisms and aetiology. MATERIALS AND METHODS Literature was reviewed using search engines with MESH terms, DH pain mechanisms and aetiology (including abrasion, erosion and periodontal disease). RESULTS The many hypotheses proposed for DHS attest to our lack of knowledge in understanding neurophysiologic mechanisms, the most widely accepted being the hydrodynamic theory. Dentin tubules must be patent from the oral environment to the pulp. Dentin exposure, usually at the cervical margin, is due to a variety of processes involving gingival recession or loss of enamel, predisposing factors being periodontal disease and treatment, limited alveolar bone, thin biotype, erosion and abrasion. CONCLUSIONS The current pain mechanism of DHS is thought to be the hydrodynamic theory. The initiation and progression of DHS are influenced by characteristics of the teeth and periodontium as well as the oral environment and external influences. Risk factors are numerous often acting synergistically and always influenced by individual susceptibility. CLINICAL RELEVANCE Whilst the pain mechanism of DHS is not well understood, clinicians need to be mindful of the aetiology and risk factors in order to manage patients' pain and expectations and prevent further dentin exposure with subsequent sensitivity.