59 resultados para Tropospheric Aerosols

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyze the impact of stratospheric volcanic aerosols on the diurnal temperature range (DTR) over Europe using long-term subdaily station records. We compare the results with a 28-member ensemble of European Centre/Hamburg version 5.4 (ECHAM5.4) general circulation model simulations. Eight stratospheric volcanic eruptions during the instrumental period are investigated. Seasonal all- and clear-sky DTR anomalies are compared with contemporary (approximately 20 year) reference periods. Clear sky is used to eliminate cloud effects and better estimate the signal from the direct radiative forcing of the volcanic aerosols. We do not find a consistent effect of stratospheric aerosols on all-sky DTR. For clear skies, we find average DTR anomalies of −0.08°C (−0.13°C) in the observations (in the model), with the largest effect in the second winter after the eruption. Although the clear-sky DTR anomalies from different stations, volcanic eruptions, and seasons show heterogeneous signals in terms of order of magnitude and sign, the significantly negative DTR anomalies (e.g., after the Tambora eruption) are qualitatively consistent with other studies. Referencing with clear-sky DTR anomalies to the radiative forcing from stratospheric volcanic eruptions, we find the resulting sensitivity to be of the same order of magnitude as previously published estimates for tropospheric aerosols during the so-called “global dimming” period (i.e., 1950s to 1980s). Analyzing cloud cover changes after volcanic eruptions reveals an increase in clear-sky days in both data sets. Quantifying the impact of stratospheric volcanic eruptions on clear-sky DTR over Europe provides valuable information for the study of the radiative effect of stratospheric aerosols and for geo-engineering purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780–1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere–ocean chemistry–climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2–3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only an insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top–down processes (stemming from changes at λ < 250 nm) relative to bottom–up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8–15 years after volcanic eruption, while the solar signal and the different volcanic eruptions dominate the OHC changes in the deeper ocean and prevent its recovery during the DM. Finally, the simulations suggest that the volcanic eruptions during the DM had a significant impact on the precipitation patterns caused by a widening of the Hadley cell and a shift in the intertropical convergence zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10–50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3–6 × 106 cm−3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an approach to retrieve tropospheric water vapour profiles from pressure broadened emission spectra at 22 GHz, measured by a ground based microwave radiometer installed in the south of Bern at 905 m. Classical microwave instruments concentrating on the troposphere observe several channels in the center and the wings of the water vapour line (20–30 Ghz), whereas our retrieval approach uses spectra with a bandwidth of 1 GHz and a high resolution around the center of the 22 GHz water vapour line. The retrieval is sensitive up to 7 km with a vertical resolution of 3–5 km. Comparisons with profiles from operational balloon soundings, performed at Payerne, 40 km away from the radiometer location, showed a good agreement up to 7 km with a correlation of above 0.8. The retrievals shows a wet bias of 10–20% compared to the sounding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Aerosol therapy in preterm infants is challenging, as a very small proportion of the drug deposits in the lungs. Aim: Our aim was to compare efficiency of standard devices with newer, more efficient aerosol delivery devices. Methods: Using salbutamol as a drug marker, we studied two prototypes of the investigational eFlow(®) nebulizer for babies (PARI Pharma GmbH), a jet nebulizer (Intersurgical(®) Cirrus(®)), and a pressurized metered dose inhaler (pMDI; GSK) with a detergent-coated holding chamber (AeroChamber(®) MV) in the premature infant nose throat-model (PrINT-model) of a 32-week preterm infant (1,750 g). A filter or an impactor was placed below the infant model's "trachea" to capture the drug dose or particle size, respectively, that would have been deposited in the lung. Results: Lung dose (percentage of nominal dose) was 1.5%, 6.8%, and 18.0-20.6% for the jet nebulizer, pMDI-holding chamber, and investigational eFlow nebulizers, respectively (p<0.001). Jet nebulizer residue was 69.4% and 10.7-13.9% for the investigational eFlow nebulizers (p<0.001). Adding an elbow extension between the eFlow and the model significantly lowered lung dose (p<0.001). A breathing pattern with lower tidal volume decreased deposition in the PrINT-model and device residue (p<0.05), but did not decrease lung dose. Conclusions: In a model for infant aerosol inhalation, we confirmed low lung dose using jet nebulizers and pMDI-holding chambers, whereas newer, more specialized vibrating membrane devices, designed specifically for use in preterm infants, deliver up to 20 times more drug to the infant's lung.