2 resultados para Trichogramma minutum
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this research the taxonomic structure of diatoms in sediments of high mountain lakes was studied. These lakes are located in Chile between 32°49' and 38°48' S in the Andean Cordillera. A total of 99 diatom taxa distributed in 48 genera were identified and all this taxa are cosmopolitan excepting a Eunotia andinofrequens, Gomphonema punae, Pinnularia araucanensis and Pinnularia acidicola, which are know only for the Southern Hemisphere. The assemblages of diatoms were different in the studied lakes. So the high mountain lakes Ocho, Huifa, Ensueño and Negra, dominated benthic diatoms which are typical of oligotrophic and acid waters as Achnanthidium exiguum, Achnanthidium minutissimum, Encyonema minutum, Pinnularia acidicola and Planothidium lanceolatum. In the assemblages from lakes Galletué, Icalma and Laja planktonic diatoms were more abundant, which are common in alkaline and mesotrophic waters, e.g., Asterionella formosa, Aulacoseira distans, Aulacoseira granulata, Cyclotella stelligera and Rhopalodia gibba.
Resumo:
Herbivore-induced plant volatiles are important host finding cues for larval parasitoids, and similarly, insect oviposition might elicit the release of plant volatiles functioning as host finding cues for egg parasitoids. We hypothesized that egg parasitoids also might utilize HIPVs of emerging larvae to locate plants with host eggs. We, therefore, assessed the olfactory response of two egg parasitoids, a generalist, Trichogramma pretiosum (Tricogrammatidae), and a specialist, Telenomus remus (Scelionidae) to HIPVs. We used a Y-tube olfactometer to tests the wasps’ responses to volatiles released by young maize plants that were treated with regurgitant from caterpillars of the moth Spodoptera frugiperda (Noctuidae) or were directly attacked by the caterpillars. The results show that the generalist egg parasitoid Tr. pretiosum is innately attracted by volatiles from freshly-damaged plants 0–1 and 2–3 h after regurgitant treatment. During this interval, the volatile blend consisted of green leaf volatiles (GLVs) and a blend of aromatic compounds, mono- and homoterpenes, respectively. Behavioral assays with synthetic GLVs confirmed their attractiveness to Tr. pretiosum. The generalist learned the more complex volatile blends released 6–7 h after induction, which consisted mainly of sesquiterpenes. The specialist T. remus on the other hand was attracted only to volatiles emitted from fresh and old damage after associating these volatiles with oviposition. Taken together, these results strengthen the emerging pattern that egg and larval parasitoids behave in a similar way in that generalists can respond innately to HIPVs, while specialists seems to rely more on associative learning.