9 resultados para Triazole
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A bitopic ligand, 4-(3,5-dimethylpyrazol-4-yl)-1,2,4-triazole (Hpz-tr) (1), containing two different heterocyclic moieties was employed for the design of copper(II)–molybdate solids under hydrothermal conditions. In the multicomponent CuII/Hpz-tr/MoVI system, a diverse set of coordination hybrids, [Cu(Hpz-tr)2SO4]·3H2O (2), [Cu(Hpz-tr)Mo3O10] (3), [Cu4(OH)4(Hpz-tr)4Mo8O26]·6H2O (4), [Cu(Hpz-tr)2Mo4O13] (5), and [Mo2O6(Hpz-tr)]·H2O (6), was prepared and characterized. A systematic investigation of these systems in the form of a ternary crystallization diagram approach was utilized to show the influence of the molar ratios of starting reagents, the metal (CuII and MoVI) sources, the temperature, etc., on the reaction products outcome. Complexes 2–4 dominate throughout a wide crystallization range of the composition triangle, while the other two compounds 5 and 6 crystallize as minor phases in a narrow concentration range. In the crystal structures of 2–6, the organic ligand behaves as a short [N–N]-triazole linker between metal centers Cu···Cu in 2–4, Cu···Mo in 5, and Mo···Mo in 6, while the pyrazolyl function remains uncoordinated. This is the reason for the exceptional formation of low-dimensional coordination motifs: 1D for 2, 4, and 6 and 2D for 3 and 5. In all cases, the pyrazolyl group is involved in H bonding (H-donor/H-acceptor) and is responsible for π–π stacking, thus connecting the chain and layer structures in more complicated H-bonding architectures. These compounds possess moderate thermal stability up to 250–300 °C. The magnetic measurements were performed for 2–4, revealing in all three cases antiferromagnetic exchange interactions between neighboring CuII centers and long-range order with a net moment below Tc of 13 K for compound 4.
Resumo:
Treatment of invasive sphenoidal aspergillosis is surgical, followed by antifungal therapy, mostly amphotericin B. To optimize the adjuvant antifungal treatment, which is often limited by severe side effects, the new triazole antifungal agent voriconazole with broad coverage of fungal pathogens including Aspergillus was investigated in a study of 4 patients with clinical, radiological and histological signs of invasive sphenoidal aspergillosis. They first underwent endoscopic sphenoidotomy with drainage and extraction of the fungal mass. Postoperatively, 2 patients were immediately treated with voriconazole. Two patients initially received amphotericin B; but this treatment had to be stopped because of acute renal toxicity. Finally, all patients were treated orally with 200 mg voriconazole twice a day for 12-14 weeks. After this combined treatment all patients were asymptomatic and there were no endoscopic or radiological signs of residual fungal disease. The only side effects were nausea in one and transient visual disturbances in 2 other patients. In the 4 patients presented and treated, voriconazole was shown to be effective and less toxic than amphotericin B in adjuvant treatment of invasive sphenoidal aspergillosis. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
To determine the efficacy and toxicity of SCH 39304 in the treatment and suppression of cryptococcal meningitis, we conducted a prospective, noncomparative study in three groups of patients: patients with acute cryptococcal meningitis, patients with acute cryptococcal meningitis in whom other therapies have failed (salvage), and patients who required maintenance therapy. As primary therapy, the patients received up to 14 days or 1 g of amphotericin B followed by SCH 39304 200 mg once daily for 12 weeks. As maintenance therapy, the patients received SCH 39304 600 mg once weekly for 12 months. Of five salvage patients, none completed the study. Two patients died, two patients clinically deteriorated, and one patient was noncompliant. Two of three patients with acute cryptococcal meningitis completed the 12-week primary therapy, and one patient was discontinued from therapy because of a skin rash (95% confidence interval, 14-100%). All four patients who were receiving weekly maintenance therapy followed up to 27 weeks were clinically stable with no change in their serum cryptococcal antigen titer from baseline when the study was prematurely terminated. Elevation of liver function test results developed in three patients and skin rash developed in one patient. The unique pharmacologic and pharmacokinetic properties of SCH 39304 (low incidence of toxicity, long serum half-life, and good penetration into the cerebrospinal fluid) lend promise to pursue other triazole antifungals at higher doses as primary therapy and less frequent dosing for maintenance therapy.
Resumo:
Black molds or dematiaceous fungi are rare etiologic agents of intracerebral abscesses and such infections carry a high mortality of up to 70% despite combined surgical and antifungal therapy. While the growing use of immunosuppressive therapies and organ transplantation have caused an increase in the incidence of rare fungal cerebral infections, occurrence in immunocompetent hosts is also possible. We describe a 60-year-old female patient with a cerebral abscess caused by Cladophialophora bantiana. The case illustrates the clinical and radiological similarities between glioblastomas and brain abscesses and emphasizes the need to perform histological and microbiological studies prior to the initiation of any form of therapy. Long-term survival from cerebral black mold abscesses has been reported only when complete surgical resection was possible. The recommended antifungal treatment involves the use of amphotericin B combined with a triazole and, if possible, flucytosine. Highly-active new generation triazole antifungal compounds (voriconazole or posaconazole) are likely to offer improved survival rates for patients with rare mold infections. In particular, posaconazole could be a new therapeutic option given its better tolerance, lower toxicity and fewer drug-drug interactions. We discuss clinical, microbiological and practical pharmacological aspects and review current and evolving treatment options.
Resumo:
A would-be amide: A 1,4-disubstituted 1,2,3-triazole was used as a surrogate for a trans amide bond to create a library of 16 diastereomeric pseudotetrapeptides as beta-turn mimetics. High-resolution structural analysis indicated that these scaffolds adopt distinct, rigid, conformationally homogeneous beta-turn-like structures (see example), some of which bind somatostatin receptor subtypes selectively, and some of which show broad-spectrum activity.
Resumo:
New fluorinated hybrid solids [Mo2F2O5(tr2pr)] (1), [Co3(tr2pr)2(MoO4)2F2]·7H2O (2), and [Co3(H2O)2(tr2pr)3(Mo8O26F2)]·3H2O (3) (tr2pr = 1,3-bis(1,2,4-triazol-4-yl)propane) were prepared from the reaction systems consisting of Co(OAc)2/CoF2 and MoO3/(NH4)6Mo7O24, as CoII and MoVI sources, in water (2) or in aqueous HF (1, 3) employing mild hydrothermal conditions. The tr2pr ligand serves as a conformationally flexible tetradentate donor. In complex 1, the octahedrally coordinated Mo atoms are linked in the discrete corner-sharing {Mo2(μ2-O)F2O4N4} unit in which a pair of tr-heterocycles (tr = 1,2,4-triazole) is arranged in cis-positions opposite to “molybdenyl” oxygen atoms. The anti−anti conformation type of tr2pr facilitates the tight zigzag chain packing motif. The crystal structure of the mixed-anion complex salt 2 consists of trinuclear [Co3(μ3-MoO4)2(μ2-F)2] units self-assembling in CoII-undulating chains (Co···Co 3.0709(15) and 3.3596(7) Å), which are cross-linked by tr2pr in layers. In 3, containing condensed oxyfluoromolybdate species, linear centrosymmetric [Co3(μ2-tr)6]6+ SBUs are organized at distances of 10.72−12.45 Å in an α-Po-like network using bitopic tr-linkers. The octahedral {N6} and {N3O3} environments of the central and peripheral cobalt atoms, respectively, are filled by triazole N atoms, water molecules, and coordinating [Mo8O26F2]6− anions. Acting as a tetradentate O-donor, each difluorooctamolybdate anion anchors four [Co3(μ2-tr)6]6+ units through their peripheral Co-sites, which consequently leads to a novel type of a two-nodal 4,10-c net with the Schläfli symbol {32.43.5}{34.420.516.65}. The 2D and 3D coordination networks of 2 and 3, respectively, are characterized by significant overall antiferromagnetic exchange interactions (J/k) between the CoII spin centers on the order of −8 and −4 K. The [Mo8O26F2]6− anion is investigated in detail by quantum chemical calculations.
Resumo:
Multivalent galactosides inhibiting Pseudomonas aeruginosa biofilms may help control this problematic pathogen. To understand the binding mode of tetravalent glycopeptide dendrimer GalAG2 [(Gal-β-OC6H4CO-Lys-Pro-Leu)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2] to its target lectin LecA, crystal structures of LecA complexes with divalent analog GalAG1 [(Gal-β-OC6H4CO-Lys-Pro-Leu)2Lys-Phe-Lys-Ile-NH2] and related glucose-triazole linked bis-galactosides 3u3 [Gal-β-O(CH2)n-(C2HN3)-4-Glc-β-(C2HN3)-[β-Glc-4-(N3HC2)]2-(CH2)n-O-β-Gal (n = 1)] and 5u3 (n = 3) were obtained, revealing a chelate bound 3u3, cross-linked 5u3, and monovalently bound GalAG1. Nevertheless, a chelate bound model better explaining their strong LecA binding and the absence of lectin aggregation was obtained by modeling for all three ligands. A model of the chelate bound GalAG2·LecA complex was also obtained rationalizing its unusually tight LecA binding (KD = 2.5 nM) and aggregation by lectin cross-linking. The very weak biofilm inhibition with divalent LecA inhibitors suggests that lectin aggregation is necessary for biofilm inhibition by GalAG2, pointing to multivalent glycoclusters as a unique opportunity to control P. aeruginosa biofilms.
Resumo:
A large family of bifunctional 1,2,4-triazole molecular tectons (tr) has been explored for engineering molybdenum(VI) oxide hybrid solids. Specifically, tr ligands bearing auxiliary basic or acidic groups were of the type amine, pyrazole, 1H-tetrazole, and 1,2,4-triazole. The organically templated molybdenum(VI) oxide solids with the general compositions [MoO3(tr)], [Mo2O6(tr)], and [Mo2O6(tr)(H2O)2] were prepared under mild hydrothermal conditions or by refluxing in water. Their crystal structures consist of zigzag chains, ribbons, or helixes of alternating cis-{MoO4N2} or {MoO5N} polyhedra stapled by short [N–N]-tr bridges that for bitriazole ligands convert the motifs into 2D or 3D frameworks. The high thermal (235–350 °C) and chemical stability observed for the materials makes them promising for catalytic applications. The molybdenum(VI) oxide hybrids were successfully explored as versatile oxidation catalysts with tert-butyl hydroperoxide (TBHP) or aqueous H2O2 as an oxygen source, at 70 °C. Catalytic performances were influenced by the different acidic–basic properties and steric hindrances of coordinating organic ligands as well as the structural dimensionality of the hybrid.