11 resultados para Transportation system management.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Prophylactic measures are key components of dairy herd mastitis control programs, but some are only relevant in specific housing systems. To assess the association between management practices and mastitis incidence, data collected in 2011 by a survey among 979 randomly selected Swiss dairy farms, and information from the regular test day recordings from 680 of these farms was analyzed. RESULTS The median incidence of farmer-reported clinical mastitis (ICM) was 11.6 (mean 14.7) cases per 100 cows per year. The median annual proportion of milk samples with a composite somatic cell count (PSCC) above 200,000 cells/ml was 16.1 (mean 17.3) %. A multivariable negative binomial regression model was fitted for each of the mastitis indicators for farms with tie-stall and free-stall housing systems separately to study the effect of other (than housing system) management practices on the ICM and PSCC events (above 200,000 cells/ml). The results differed substantially by housing system and outcome. In tie-stall systems, clinical mastitis incidence was mainly affected by region (mountainous production zone; incidence rate ratio (IRR) = 0.73), the dairy herd replacement system (1.27) and farmers age (0.81). The proportion of high SCC was mainly associated with dry cow udder controls (IRR = 0.67), clean bedding material at calving (IRR = 1.72), using total merit values to select bulls (IRR = 1.57) and body condition scoring (IRR = 0.74). In free-stall systems, the IRR for clinical mastitis was mainly associated with stall climate/temperature (IRR = 1.65), comfort mats as resting surface (IRR = 0.75) and when no feed analysis was carried out (IRR = 1.18). The proportion of high SSC was only associated with hand and arm cleaning after calving (IRR = 0.81) and beef producing value to select bulls (IRR = 0.66). CONCLUSIONS There were substantial differences in identified risk factors in the four models. Some of the factors were in agreement with the reported literature while others were not. This highlights the multifactorial nature of the disease and the differences in the risks for both mastitis manifestations. Attempting to understand these multifactorial associations for mastitis within larger management groups continues to play an important role in mastitis control programs.
Resumo:
The new computing paradigm known as cognitive computing attempts to imitate the human capabilities of learning, problem solving, and considering things in context. To do so, an application (a cognitive system) must learn from its environment (e.g., by interacting with various interfaces). These interfaces can run the gamut from sensors to humans to databases. Accessing data through such interfaces allows the system to conduct cognitive tasks that can support humans in decision-making or problem-solving processes. Cognitive systems can be integrated into various domains (e.g., medicine or insurance). For example, a cognitive system in cities can collect data, can learn from various data sources and can then attempt to connect these sources to provide real time optimizations of subsystems within the city (e.g., the transportation system). In this study, we provide a methodology for integrating a cognitive system that allows data to be verbalized, making the causalities and hypotheses generated from the cognitive system more understandable to humans. We abstract a city subsystem—passenger flow for a taxi company—by applying fuzzy cognitive maps (FCMs). FCMs can be used as a mathematical tool for modeling complex systems built by directed graphs with concepts (e.g., policies, events, and/or domains) as nodes and causalities as edges. As a verbalization technique we introduce the restriction-centered theory of reasoning (RCT). RCT addresses the imprecision inherent in language by introducing restrictions. Using this underlying combinatorial design, our approach can handle large data sets from complex systems and make the output understandable to humans.
Resumo:
Synchronizing mind maps with fuzzy cognitive maps can help to handle complex problems with many involved stakeholders by taking advantage of human creativity. The proposed approach has the capacity to instantiate cognitive cities by including cognitive computing. A use case in the context of decision-finding (concerning a transportation system) is presented to illustrate the approach.
Resumo:
The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management.