34 resultados para Transportation robot

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade, the end-state comfort effect (e.g., Rosenbaum et al., 2006) has received a considerable amount of attention. However, some of the underlying mechanisms are still to be investigated, amongst others, how sequential planning affects end-state comfort and how this effect develops over learning. In a two-step sequencing task, e.g., postural comfort can be planned on the intermediate position (next state) or on the actual end position (final state). It might be hypothesized that, in initial acquisition, next state’s comfort is crucial for action planning but that, in the course of learning, final state’s comfort is taken more and more into account. To test this hypothesis, a variant of Rosenbaum’s vertical stick transportation task was used. Participants (N = 16, right-handed) received extensive practice on a two-step transportation task (10,000 trials over 12 sessions). From the initial position on the middle stair of a staircase in front of the participant, the stick had to be transported either 20 cm upwards and then 40 cm downwards or 20 cm downwards and then 40 cm upwards (N = 8 per subgroup). Participants were supposed to produce fluid movements without changing grasp. In the pre- and posttest, participants were tested on both two-step sequencing tasks as well as on 20 cm single-step upwards and downwards movements (10 trials per condition). For the test trials, grasp height was calculated kinematographically. In the pretest, large end/next/final-state comfort effects for single-step transportation tasks and large next-state comfort effects for sequenced tasks were found. However, no change in grasp height from pre- to posttest could be revealed. Results show that, in vertical stick transportation sequences, the final state is not taken into account when planning grasp height. Instead, action planning seems to be solely based on aspects of the next action goal that is to be reached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a haptic-based approach for retraining of interjoint coordination following stroke called time-independent functional training (TIFT) and implemented this mode in the ARMin III robotic exoskeleton. The ARMin III robot was developed by Drs. Robert Riener and Tobias Nef at the Swiss Federal Institute of Technology Zurich (Eidgenossische Technische Hochschule Zurich, or ETH Zurich), in Zurich, Switzerland. In the TIFT mode, the robot maintains arm movements within the proper kinematic trajectory via haptic walls at each joint. These arm movements focus training of interjoint coordination with highly intuitive real-time feedback of performance; arm movements advance within the trajectory only if their movement coordination is correct. In initial testing, 37 nondisabled subjects received a single session of learning of a complex pattern. Subjects were randomized to TIFT or visual demonstration or moved along with the robot as it moved though the pattern (time-dependent [TD] training). We examined visual demonstration to separate the effects of action observation on motor learning from the effects of the two haptic guidance methods. During these training trials, TIFT subjects reduced error and interaction forces between the robot and arm, while TD subject performance did not change. All groups showed significant learning of the trajectory during unassisted recall trials, but we observed no difference in learning between groups, possibly because this learning task is dominated by vision. Further testing in stroke populations is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conclusion: A robot built specifically for stereotactic cochlear implantation provides equal or better accuracy levels together with a better integration into a clinical environment, when compared to existing approaches based on industrial robots. Objectives: To evaluate the technical accuracy of a robotic system developed specifically for lateral skull base surgery in an experimental setup reflecting the intended clinical application. The invasiveness of cochlear electrode implantation procedures may be reduced by replacing the traditional mastoidectomy with a small tunnel slightly larger in diameter than the electrode itself. Methods: The end-to-end accuracy of the robot system and associated image-guided procedure was evaluated on 15 temporal bones of whole head cadaver specimens. The main components of the procedure were as follows: reference screw placement, cone beam CT scan, computer-aided planning, pair-point matching of the surgical plan, robotic drilling of the direct access tunnel, and post-operative cone beam CT scan and accuracy assessment. Results: The mean accuracy at the target point (round window) was 0.56 ± 41 mm with an angular misalignment of 0.88 ± 0.41°. The procedural time of the registration process through the completion of the drilling procedure was 25 ± 11 min. The robot was fully operational in a clinical environment.