7 resultados para Transient Flow

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: To analyze how far an ischemic component might have been involved in optic neuritis. METHODS: Case report: a 32-year-old man with symptoms characteristic for optic neuritis underwent extensive clinical, laboratory/serological and vascular examination for systemic associations and vascular involvement. RESULTS: The patient was found to have a temporary ocular blood flow dysregulation and increased plasma endothelin-1 levels which decreased after the acute phase of the optic nerve. CONCLUSIONS: We conclude that there might be an ischemic component in this patient with optic neuritis and hypothesize that this ischemic component is at least in part due to a temporarily increased endothelin-1 level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate whether intermittent pneumatic compression (IPC) augments skin blood flow through transient suspension of local vasoregulation, the veno-arteriolar response (VAR), in healthy controls and in patients with peripheral arterial disease (PAD). METHODS: Nineteen healthy limbs and twenty-two limbs with PAD were examined. To assess VAR, skin blood flow (SBF) was measured using laser Doppler fluxmetry in the horizontal and sitting positions and was defined as percentage change with postural alteration [(horizontal SBF--sitting SBF)/horizontal SBF x 100]. On IPC application to the foot, the calf, or both, SBF was measured with laser Doppler fluxmetry, the probe being attached to the pulp of the big toe. RESULTS: Baseline VAR was higher in the controls 63.8 +/- 6.4% than in patients with PAD (31.7 +/- 13.4%, P = .0162). In both groups SBF was significantly higher with IPC than at rest (P < .0001). A higher percentage increase with IPC was demonstrated in the controls (242 +/- 85% to 788 +/- 318%) than in subjects with PAD, for each one of the three different IPC modes investigated (98 +/- 33% to 275 +/- 72%) with IPC was demonstrated. The SBF enhancement with IPC correlated with VAR for all three compression modes (r = 0.58, P = .002 for calf compression, r = 0.65, P < .0001 for foot compression alone, and r = 0.64, P = .0002 for combined foot and calf compression). CONCLUSION: The integrity of the veno-arteriolar response correlates with the level of skin blood flow augmentation generated with intermittent pneumatic compression, indicating that this may be associated with a transient suspension of the autoregulatory vasoconstriction both in healthy controls and in patients with PAD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: Preliminary experience with the C-Port Flex-A Anastomosis System (Cardica, Inc.) to enable rapid automated anastomosis has been reported in coronary artery bypass surgery. The goal of the current study was to define the feasibility and safety of this method for high-flow extracranial-intracranial (EC-IC) bypass surgery in a clinical series. METHODS: In a prospective study design, patients with symptomatic carotid artery (CA) occlusion were selected for C-Port-assisted high-flow EC-IC bypass surgery if they met the following criteria: 1) transient or moderate permanent symptoms of focal ischemia; 2) CA occlusion; 3) hemodynamic instability; and 4) had provided informed consent. Bypasses were done using a radial artery graft that was proximally anastomosed to the superficial temporal artery trunk, the cervical external, or common CA. All distal cerebral anastomoses were performed on M2 branches using the C-Port Flex-A system. RESULTS: Within 6 months, 10 patients were enrolled in the study. The distal automated anastomosis could be accomplished in all patients; the median temporary occlusion time was 16.6+/-3.4 minutes. Intraoperative digital subtraction angiography (DSA) confirmed good bypass function in 9 patients, and in 1 the anastomosis was classified as fair. There was 1 major perioperative complication that consisted of the creation of a pseudoaneurysm due to a hardware problem. In all but 1 case the bypass was shown to be patent on DSA after 7 days; furthermore, in 1 patient a late occlusion developed due to vasospasm after a sylvian hemorrhage. One-week follow-up DSA revealed transient asymptomatic extracranial spasm of the donor artery and the radial artery graft in 1 case. Two patients developed a limited zone of infarction on CT scanning during the follow-up course. CONCLUSIONS: In patients with symptomatic CA occlusion, C-Port Flex-A-assisted high-flow EC-IC bypass surgery is a technically feasible procedure. The system needs further modification to achieve a faster and safer anastomosis to enable a conclusive comparison with standard and laser-assisted methods for high-flow bypass surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Depressive symptoms and caregiving stress may contribute to cardiovascular disease (CVD) via chronic platelet activation; however, it remains unclear whether this elevated activation constitutes a trait or state marker. The primary objective was to investigate whether persistent depressive symptoms would relate to elevated platelet activation in response to acute psychological stress over a three-year period. METHODS: Depressive symptoms (Brief Symptom Inventory) were assessed among 99 spousal dementia caregivers (52-88 years). Platelet P-selectin expression was assessed in vivo using flow cytometry at three time-points over the course of an acute stress test: baseline, post-stress, and after 14 min of recovery. Two competing structural analytic models of depressive symptoms and platelet hyperactivity with three yearly assessments were compared. RESULTS: Although depressive symptoms were generally in the subclinical range, their persistent elevation was associated with heightened platelet reactivity and recovery at all three-years while the change in depressive symptoms from the previous year did not predict platelet activity. LIMITATIONS: These results focus on caregivers providing consistent home care, while future studies may extend these results by modeling major caregiving stressors. CONCLUSIONS: Enduring aspects of negative affect, even among those not suffering from clinical depression are related to hemostatic changes, in this case platelet reactivity, which might be one mechanism for previously reported increase in CVD risk among elderly Alzheimer caregivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulation experiments give insight into the evolving energy partitioning during high-strain torsion experiments of calcite. Our numerical experiments are designed to derive a generic macroscopic grain size sensitive flow law capable of describing the full evolution from the transient regime to steady state. The transient regime is crucial for understanding the importance of micro structural processes that may lead to strain localization phenomena in deforming materials. This is particularly important in geological and geodynamic applications where the phenomenon of strain localization happens outside the time frame that can be observed under controlled laboratory conditions. Ourmethod is based on an extension of the paleowattmeter approach to the transient regime. We add an empirical hardening law using the Ramberg-Osgood approximation and assess the experiments by an evolution test function of stored over dissipated energy (lambda factor). Parameter studies of, strain hardening, dislocation creep parameter, strain rates, temperature, and lambda factor as well asmesh sensitivity are presented to explore the sensitivity of the newly derived transient/steady state flow law. Our analysis can be seen as one of the first steps in a hybrid computational-laboratory-field modeling workflow. The analysis could be improved through independent verifications by thermographic analysis in physical laboratory experiments to independently assess lambda factor evolution under laboratory conditions.