45 resultados para Transfer-rna Genes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Three U7 RNA-related sequences were isolated from mouse genomic DNA libraries. Only one of the sequences completely matches the published mouse U7 RNA sequence, whereas the other two apparently represent pseudogenes. The matching sequence represents a functional gene, as it is expressed after microinjection into Xenopus laevis oocytes. Sequence variations of the conserved cis-acting 5' and 3' elements of U RNA genes may partly explain the low abundance of U7 RNA.
Resumo:
In this study, we describe the isolation of Laribacter hongkongensis, a recently described genus and species of bacterium, in pure culture on charcoal cefoperazone deoxycholate agar from the stool of six patients with diarrhea. Three patients were residents of Hong Kong, and three of Switzerland. In none of the stool samples obtained from these six patients was Salmonella, Shigella, enterohemorrhagic Escherichia coli, Vibrio, Aeromonas, Plesiomonas, or Campylobacter recovered. Rotavirus antigen detection, electron microscopic examination for viruses, and microscopic examinations for ova and cysts were all negative for the stool samples obtained from the three patients in Hong Kong. Enterotoxigenic E. coli was recovered from one of the patients in Hong Kong. Unlike L. hongkongensis type strain HKU1, all the six strains were motile with bipolar flagellae. Sequencing of the 16S ribosomal RNA genes of the six strains showed that they all had sequences with only 0-2 base differences to that of the type strain. Pulsed field gel electrophoresis of the SpeI digested genomic DNA of the six isolates and that of the type strain revealed that the seven isolates were genotypically unrelated strains. More extensive epidemiologic studies should be carried out to ascertain the causative association between L. hongkongensis and diarrhea and to define the reservoir and modes of transmission of L. hongkongensis.
Resumo:
RTX toxins (repeats in the structural toxin) are pore-forming protein toxins produced by a broad range of pathogenic Gram-negative bacteria. In vitro, RTX toxins mostly exhibit a cytotoxic and often also a hemolytic activity. They are particularly widespread in species of the family Pasteurellaceae which cause infectious diseases, most frequently in animals but also in humans. Most RTX toxins are proteins with a molecular mass of 100-200 kDa and are post-translationally activated by acylation via a specific activator protein. The repeated structure of RTX toxins, which gave them their name, is composed of iterative glycine-rich nonapeptides binding Ca2+ on the C-terminal half of the protein. Genetic analysis of RTX toxins of various species of Pasteurellaceae and of a few other Gram-negative bacteria gave evidence of horizontal transfer of genes encoding RTX toxins and led to speculations that RTX toxins might have originated from Pasteurellaceae. The toxic activities of RTX toxins in host cells may lead to necrosis and apoptosis and the underlying detailed mechanisms are currently under investigation. The impact of RTX toxins in pathogenicity and the immune responses of the host were described for several species of Pasteurellaceae. Neutralizing antibodies were shown to significantly reduce the cytotoxic activity of RTX toxins. They constitute a valuable strategy in the development of immuno-prophylactics against several animal diseases caused by pathogenic species of Pasteurellaceae. Although many RTX toxins possess cytotoxic and hemolytic activities toward a broad range of cells and erythrocytes, respectively, a few RTX toxins were shown to have cytotoxic activity only against cells of specific hosts and/or show cell-type specificity. Further evidence exists that RTX toxins play a potential role in host specificity of certain pathogens.
Resumo:
The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to > 1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p's molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.
Resumo:
It has been highlighted that RNA quality and appropriate reference gene selection is crucial for the interpretation of RT-qPCR results in human placental samples. In this context we investigated the effect of RNA degradation on the mRNA abundance of seven frequently used reference genes in 119 human placental samples. Combining RNA integrity measurements, RT-qPCR analysis and mathematical modeling we found major differences regarding the effect of RNA degradation on the measured expression levels between the different reference genes. Furthermore, we demonstrated that a modified RNA extraction method significantly improved RNA quality and consequently increased transcript levels of all reference genes.
Resumo:
Because Staphylococcus aureus strains contain multiple virulence factors, studying their pathogenic role by single-gene inactivation generated equivocal results. To circumvent this problem, we have expressed specific S. aureus genes in the less virulent organism Streptococcus gordonii and tested the recombinants for a gain of function both in vitro and in vivo. Clumping factor A (ClfA) and coagulase were investigated. Both gene products were expressed functionally and with similar kinetics during growth by streptococci and staphylococci. ClfA-positive S. gordonii was more adherent to platelet-fibrin clots mimicking cardiac vegetations in vitro and more infective in rats with experimental endocarditis (P < 0.05). Moreover, deleting clfA from clfA-positive streptococcal transformants restored both the low in vitro adherence and the low in vivo infectivity of the parent. Coagulase-positive transformants, on the other hand, were neither more adherent nor more infective than the parent. Furthermore, coagulase did not increase the pathogenicity of clfA-positive streptococci when both clfA and coa genes were simultaneously expressed in an artificial minioperon in streptococci. These results definitively attribute a role for ClfA, but not coagulase, in S. aureus endovascular infections. This gain-of-function strategy might help solve the role of individual factors in the complex the S. aureus-host relationship.
Resumo:
TFIIH has been implicated in several fundamental cellular processes, including DNA repair, cell cycle progression, and transcription. In transcription, the helicase activity of TFIIH functions to melt promoter DNA; however, the in vivo function of the Cdk7 kinase subunit of TFIIH, which has been hypothesized to be involved in RNA polymerase II (Pol II) phosphorylation, is not clearly understood. Using temperature-sensitive and null alleles of cdk7, we have examined the role of Cdk7 in the activation of Drosophila heat shock genes. Several in vivo approaches, including polytene chromosome immunofluorescence, nuclear run-on assays, and, in particular, a protein-DNA cross-linking assay customized for adults, revealed that Cdk7 kinase activity is required for full activation of heat shock genes, promoter-proximal Pol II pausing, and Pol II-dependent chromatin decondensation. The requirement for Cdk7 occurs very early in the transcription cycle. Furthermore, we provide evidence that TFIIH associates with the elongation complex much longer than previously suspected.
Resumo:
The histones which pack new DNA during the S phase of animal cells are made from mRNAs that are cleaved at their 3' end but not polyadenylated. Some of the factors used in this reaction are unique to it while others are shared with the polyadenylation process that generates all other mRNAs. Recent work has begun to shed light on how the cell manages the assignment of these common components to the two 3' processing systems, and how it achieves their cell cycle-regulation and recruitment to the histone pre-mRNA. Moreover, recent and older findings reveal multiple connections between the nuclear organization of histone genes, their transcription and 3' end processing as well as the control of cell proliferation.
Resumo:
Articular cartilage injuries and degeneration affect a large proportion of the population in developed countries world wide. Stem cells can be differentiated into chondrocytes by adding transforming growth factor-beta1 and dexamethasone to a pellet culture, which are unfeasible for tissue engineering purposes. We attempted to achieve stable chondrogenesis without any requirement for exogenous growth factors. Human mesenchymal stem cells were transduced with an adenoviral vector containing the SRY-related HMG-box gene 9 (SOX9), and were cultured in a three-dimensional (3D) hydrogel scaffold composite. As an additional treatment, mechanical stimulation was applied in a custom-made bioreactor. SOX9 increased the expression level of its known target genes, as well as its cofactors: the long form of SOX5 and SOX6. However, it was unable to increase the synthesis of sulfated glycosaminoglycans (GAGs). Mechanical stimulation slightly enhanced collagen type X and increased lubricin expression. The combination of SOX9 and mechanical load boosted GAG synthesis as shown by (35)S incorporation. GAG production rate corresponded well with the amount of (endogenous) transforming growth factor-beta1. Finally, cartilage oligomeric matrix protein expression was increased by both treatments. These findings provide insight into the mechanotransduction of mesenchymal stem cells and demonstrate the potential of a transcription factor in stem cell therapy.
Resumo:
In the last decade, few areas of biology have been transformed as thoroughly as RNA molecular biology. Without any doubt, one of the most significant advances has been the discovery of small (20-30 nucleotide) noncoding RNAs that regulate genes and genomes. The effects of small RNAs on gene expression and control are generally inhibitory, and the corresponding regulatory mechanisms are therefore collectively subsumed under the heading of RNA silencing and/or RNA interference. Two primary categories of these small RNAs - short interfering RNAs (siRNAs) and microRNAs (miRNAs) - act in both somatic and germline lineages of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA and miRNA-based regulation has direct implications for fundamental biology as well as disease aetiology and treatment as it is discussed in this review on 'new techniques in molecular biology'.
Resumo:
RNA editing in kinetoplastid protozoa is a post-transcriptional process of uridine insertion or deletion in mitochondrial mRNAs. The process involves two RNA species, the pre-edited mRNA and in most cases a trans-acting guide RNA (gRNA). Sequences within gRNAs define the position and extend of mRNA editing. Both mRNAs and gRNAs are encoded by mitochondrial genes in the kinetoplast DNA (kDNA), which consists of thousands of small circular DNA molecules, called minicircles, encoding thousands of gRNAs, catenated together and with a few mRNA encoding larger circles, the maxicircles, to form a huge DNA network. Editing has been shown to result in translatable mRNAs of bona fide mitochondrial genes as well as novel alternatively edited transcripts that are involved in the maintenance of the kDNA itself. RNA editing occurs within large protein-RNA complexes, editosomes, containing gRNA, preedited and partially edited mRNAs and also structural and catalytically active proteins. Editosomes are diverse in both RNA and protein composition and undergoe structural remodeling during the maturation. The compositional and structural diversity of editosomes further underscores the complexity of the RNA editing process.
Resumo:
Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.
Resumo:
Medulloblastoma is the most common malignant brain tumor in children and is associated with a poor outcome. We were interested in gaining further insight into the potential of targeting the human kinome as a novel approach to sensitize medulloblastoma to chemotherapeutic agents. A library of small interfering RNA (siRNA) was used to downregulate the known human protein and lipid kinases in medulloblastoma cell lines. The analysis of cell proliferation, in the presence or absence of a low dose of cisplatin after siRNA transfection, identified new protein and lipid kinases involved in medulloblastoma chemoresistance. PLK1 (polo-like kinase 1) was identified as a kinase involved in proliferation in medulloblastoma cell lines. Moreover, a set of 6 genes comprising ATR, LYK5, MPP2, PIK3CG, PIK4CA, and WNK4 were identified as contributing to both cell proliferation and resistance to cisplatin treatment in medulloblastoma cells. An analysis of the expression of the 6 target genes in primary medulloblastoma tumor samples and cell lines revealed overexpression of LYK5 and PIK3CG. The results of the siRNA screen were validated by target inhibition with specific pharmacological inhibitors. A pharmacological inhibitor of p110γ (encoded by PIK3CG) impaired cell proliferation in medulloblastoma cell lines and sensitized the cells to cisplatin treatment. Together, our data show that the p110γ phosphoinositide 3-kinase isoform is a novel target for combinatorial therapies in medulloblastoma.
Resumo:
Telomerase activity is readily detectable in extracts from human hematopoietic stem and progenitor cells, but appears unable to maintain telomere length with proliferation in vitro and with age in vivo. We performed a detailed study of the telomere length by flow FISH analysis in leukocytes from 835 healthy individuals and 60 individuals with reduced telomerase activity. Healthy individuals showed a broad range in average telomere length in granulocytes and lymphocytes at any given age. The average telomere length declined with age at a rate that differed between age-specific breakpoints and between cell types. Gender differences between leukocyte telomere lengths were observed for all cell subsets studied; interestingly, this trend could already be detected at birth. Heterozygous carriers for mutations in either the telomerase reverse transcriptase (hTERT) or the telomerase RNA template (hTERC) gene displayed striking and comparable telomere length deficits. Further, non-carrier relatives of such heterozygous individuals had somewhat shorter leukocyte telomere lengths than expected; this difference was most profound for granulocytes. Failure to maintain telomere homeostasis as a result of partial telomerase deficiency is thought to trigger cell senescence or cell death, eventually causing tissue failure syndromes. Our data are consistent with these statements and suggest that the likelihood of similar processes occurring in normal individuals increases with age. Our work highlights the essential role of telomerase in the hematopoietic system and supports the notion that telomerase levels in hematopoietic cells, while limiting and unable to prevent overall telomere shortening, are nevertheless crucial to maintain telomere homeostasis with age.