4 resultados para Transfer strategies
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Gene transfer using electroporation is an essential method for the study of developmental biology, especially to understand the internal control of degeneration and apoptosis of the muscle cells that occurs earlier and quicker than the usual degeneration process occurring by aging. Such experimental studies may have a role in developing new strategies for treating patients suffering from inherited primary myopathies such as Duchenne muscular dystrophy (DMD). The present study was designed to evaluate the feasibility of electroporation mediated transfer of reporter genes to the diaphragm in vivo. This is the first report of gene transfer of naked plasmid DNA into the diaphragm muscle in vivo using electroporation. Our results showed that in vivo gene transfer of naked plasmid DNA into the diaphragm muscle using electroporation is feasible.
Resumo:
Software-maintenance offshore outsourcing (SMOO) projects have been plagued by tedious knowledge transfer during the service transition to the vendor. Vendor engineers risk being over-strained by the high amounts of novel information, resulting in extra costs that may erode the business case behind offshoring. Although stakeholders may desire to avoid these extra costs by implementing appropriate knowledge transfer practices, little is known on how effective knowledge transfer can be designed and managed in light of the high cognitive loads in SMOO transitions. The dissertation at hand addresses this research gap by presenting and integrating four studies. The studies draw on cognitive load theory, attributional theory, and control theory and they apply qualitative, quantitative, and simulation methods to qualitative data from eight in-depth longitudinal cases. The results suggest that the choice of appropriate learning tasks may be more central to knowledge transfer than the amount of information shared with vendor engineers. Moreover, because vendor staff may not be able to and not dare to effectively self-manage learn-ing tasks during early transition, client-driven controls may be initially required and subsequently faded out. Collectively, the results call for people-based rather than codification-based knowledge management strategies in at least moderately specific and complex software environments.
Resumo:
Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the world's oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine genome-wide variation and compared it against two CTVT genome sequences, thereby separating alleles derived from the founder's genome from somatic drivers of clonal transmissibility. We show that CTVT has undergone continuous adaptation to its transmissible allograft niche, with overlapping mutations at every step of immunosurveillance, particularly self-antigen presentation and apoptosis. We also identified chronologically early somatic mutations in oncogenesis- and immune-related genes that may represent key initiators of clonal transmissibility. Thus, we provide the first insights into the specific genomic aberrations that underlie CTVT's dogged perseverance in canids around the world.
Resumo:
The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for space debris using optical sensors. The debris objects are discovered during systematic survey observations. In general, the result of a discovery consists in only a short observation arc, or tracklet, which is used to perform a first orbit determination in order to be able to observe t he object again in subsequent follow-up observations. The additional observations are used in the orbit improvement process to obtain accurate orbits to be included in a catalogue. In order to obtain the most accurate orbit within the time available it is necessary to optimize the follow-up observations strategy. In this paper an in‐depth study, using simulations and covariance analysis, is performed to identify the optimal sequence of follow-up observations to obtain the most accurate orbit propagation to be used for the space debris catalogue maintenance. The main factors that determine the accuracy of the results of an orbit determination/improvement process are: tracklet length, number of observations, type of orbit, astrometric error of the measurements, time interval between tracklets, and the relative position of the object along its orbit with respect to the observing station. The main aim of the covariance analysis is to optimize the follow-up strategy as a function of the object-observer geometry, the interval between follow-up observations and the shape of the orbit. This an alysis can be applied to every orbital regime but particular attention was dedicated to geostationary, Molniya, and geostationary transfer orbits. Finally the case with more than two follow-up observations and the influence of a second observing station are also analyzed.