5 resultados para Traffic incident management

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Critical incidents in clinical medicine can have far-reaching consequences on patient health. In cases of severe medical errors they can seriously harm the patient or even lead to death. The involvement in such an event can result in a stress reaction, a so-called acute posttraumatic stress disorder in the healthcare provider, the so-called second victim of an adverse event. Psychological distress may not only have a long lasting impact on quality of life of the physician or caregiver involved but it may also affect the ability to provide safe patient care in the aftermath of adverse events. METHODS A literature review was performed to obtain information on care giver responses to medical errors and to determine possible supportive strategies to mitigate negative consequences of an adverse event on the second victim. An internet search and a search in Medline/Pubmed for scientific studies were conducted using the key words "second victim, "medical error", "critical incident stress management" (CISM) and "critical incident stress reporting system" (CIRS). Sources from academic medical societies and public institutions which offer crisis management programs where analyzed. The data were sorted by main categories and relevance for hospitals. Analysis was carried out using descriptive measures. RESULTS In disaster medicine and aviation navigation services the implementation of a CISM program is an efficient intervention to help staff to recover after a traumatic event and to return to normal functioning and behavior. Several other concepts for a clinical crisis management plan were identified. CONCLUSIONS The integration of CISM and CISM-related programs in a clinical setting may provide efficient support in an acute crisis and may help the caregiver to deal effectively with future error events and employee safety.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Fractures of the mandible (lower jaw) are a common occurrence and usually related to interpersonal violence or road traffic accidents. Mandibular fractures may be treated using open (surgical) and closed (non-surgical) techniques. Fracture sites are immobilized with intermaxillary fixation (IMF) or other external or internal devices (i.e. plates and screws) to allow bone healing. Various techniques have been used, however uncertainty exists with respect to the specific indications for each approach. OBJECTIVES The objective of this review is to provide reliable evidence of the effects of any interventions either open (surgical) or closed (non-surgical) that can be used in the management of mandibular fractures, excluding the condyles, in adult patients. SEARCH METHODS We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (to 28 February 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 1), MEDLINE via OVID (1950 to 28 February 2013), EMBASE via OVID (1980 to 28 February 2013), metaRegister of Controlled Trials (to 7 April 2013), ClinicalTrials.gov (to 7 April 2013) and the WHO International Clinical Trials Registry Platform (to 7 April 2013). The reference lists of all trials identified were checked for further studies. There were no restrictions regarding language or date of publication. SELECTION CRITERIA Randomised controlled trials evaluating the management of mandibular fractures without condylar involvement. Any studies that compared different treatment approaches were included. DATA COLLECTION AND ANALYSIS At least two review authors independently assessed trial quality and extracted data. Results were to be expressed as random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confidence intervals. Heterogeneity was to be investigated to include both clinical and methodological factors. MAIN RESULTS Twelve studies, assessed as high (six) and unclear (six) risk of bias, comprising 689 participants (830 fractures), were included. Interventions examined different plate materials and morphology; use of one or two lag screws; microplate versus miniplate; early and delayed mobilization; eyelet wires versus Rapid IMF™ and the management of angle fractures with intraoral access alone or combined with a transbuccal approach. Patient-oriented outcomes were largely ignored and post-operative pain scores were inadequately reported. Unfortunately, only one or two trials with small sample sizes were conducted for each comparison and outcome. Our results and conclusions should therefore be interpreted with caution. We were able to pool the results for two comparisons assessing one outcome. Pooled data from two studies comparing two miniplates versus one miniplate revealed no significant difference in the risk of post-operative infection of surgical site (risk ratio (RR) 1.32, 95% CI 0.41 to 4.22, P = 0.64, I(2) = 0%). Similarly, no difference in post-operative infection between the use of two 3-dimensional (3D) and standard (2D) miniplates was determined (RR 1.26, 95% CI 0.19 to 8.13, P = 0.81, I(2) = 27%). The included studies involved a small number of participants with a low number of events. AUTHORS' CONCLUSIONS This review illustrates that there is currently inadequate evidence to support the effectiveness of a single approach in the management of mandibular fractures without condylar involvement. The lack of high quality evidence may be explained by clinical diversity, variability in assessment tools used and difficulty in grading outcomes with existing measurement tools. Until high level evidence is available, treatment decisions should continue to be based on the clinician's prior experience and the individual circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.