15 resultados para Traffic flow parameter

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a novel methodology to generate realistic network flow traces to enable systematic evaluation of network monitoring systems in various traffic conditions. Our technique uses a graph-based approach to model the communication structure observed in real-world traces and to extract traffic templates. By combining extracted and user-defined traffic templates, realistic network flow traces that comprise normal traffic and customized conditions are generated in a scalable manner. A proof-of-concept implementation demonstrates the utility and simplicity of our method to produce a variety of evaluation scenarios. We show that the extraction of templates from real-world traffic leads to a manageable number of templates that still enable accurate re-creation of the original communication properties on the network flow level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper focuses on a hybrid mobile-sensor network identify- ing potential advantages and challenges of its use and defining feasible applications. The main value of the paper, however, is in the proposed analysis approach to evaluate the performance at the mobile network side given the mixed mobile-sensor traffic. The approach combines packet- level analysis with modelling of flow-level behaviour and can be applied for the study of various application scenarios. In this paper we consider two applications with distinct traffic models namely multimedia traffic and best-effort traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Long Term Evolution (LTE) cellular technology is expected to extend the capacity and improve the performance of current 3G cellular networks. Among the key mechanisms in LTE responsible for traffic management is the packet scheduler, which handles the allocation of resources to active flows in both the frequency and time dimension. This paper investigates for various scheduling scheme how they affect the inter-cell interference characteristics and how the interference in turn affects the user’s performance. A special focus in the analysis is on the impact of flow-level dynamics resulting from the random user behaviour. For this we use a hybrid analytical/simulation approach which enables fast evaluation of flow-level performance measures. Most interestingly, our findings show that the scheduling policy significantly affects the inter-cell interference pattern but that the scheduler specific pattern has little impact on the flow-level performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of three distinct scheduling schemes for LTE uplink with main focus on the impact of flow-level dynamics resulting from the random user behaviour. We apply a combined analytical/simulation approach which enables fast evaluation of flow-level performance measures. The results show that by considering flow-level dynamics we are able to observe performance trends that would otherwise stay hidden if only packet-level analysis is performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auditory hallucinations comprise a critical domain of psychopathology in schizophrenia. Repetitive transcranial magnetic stimulation (TMS) has shown promise as an intervention with both positive and negative reports. The aim of this study was to test resting-brain perfusion before treatment as a possible biological marker of response to repetitive TMS. Twenty-four medicated patients underwent resting-brain perfusion magnetic resonance imaging with arterial spin labeling (ASL) before 10 days of repetitive TMS treatment. Response was defined as a reduction in the hallucination change scale of at least 50%. Responders (n=9) were robustly differentiated from nonresponders (n=15) to repetitive TMS by the higher regional cerebral blood flow (CBF) in the left superior temporal gyrus (STG) (P<0.05, corrected) before treatment. Resting-brain perfusion in the left STG predicted the response to repetitive TMS in this study sample, suggesting this parameter as a possible bio-marker of response in patients with schizophrenia and auditory hallucinations. Being noninvasive and relatively easy to use, resting perfusion measurement before treatment might be a clinically relevant way to identify possible responders and nonresponders to repetitive TMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p < 0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telomeres have emerged as crucial cellular elements in aging and various diseases including cancer. To measure the average length of telomere repeats in cells, we describe our protocols that use fluorescent in situ hybridization (FISH) with labeled peptide nucleic acid (PNA) probes specific for telomere repeats in combination with fluorescence measurements by flow cytometry (flow FISH). Flow FISH analysis can be performed using commercially available flow cytometers, and has the unique advantage over other methods for measuring telomere length of providing multi-parameter information on the length of telomere repeats in thousands of individual cells. The accuracy and reproducibility of the measurements is augmented by the automation of most pipetting (aspiration and dispensing) steps, and by including an internal standard (control cells) with a known telomere length in every tube. The basic protocol for the analysis of nucleated blood cells from 22 different individuals takes about 12 h spread over 2-3 days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN: This is an experimental study on an artificial vertebra model and human cadaveric spine. OBJECTIVE: Characterization of polymethylmethacrylate (PMMA) bone cement distribution in the vertebral body as a function of cement viscosity, bone porosity, and injection speed. Identification of relevant parameters for improved cement flow predictability and leak prevention in vertebroplasty. SUMMARY OF BACKGROUND DATA: Vertebroplasty is an efficient procedure to treat vertebral fractures and stabilize osteoporotic bone in the spine. Severe complications result from bone cement leakage into the spinal canal or the vascular system. Cement viscosity has been identified as an important parameter for leak prevention but the influence of bone structure and injection speed remain obscure. METHODS: An artificial vertebra model based on open porous aluminum foam was used to simulate bone of known porosity. Fifty-six vertebroplasties with 4 different starting viscosity levels and 2 different injection speeds were performed on artificial vertebrae of 3 different porosities. A validation on a human cadaveric spine was executed. The experiments were radiographically monitored and the shape of the cement clouds quantitatively described with the 2 indicators circularity and mean cement spreading distance. RESULTS: An increase in circularity and a decrease in mean cement spreading distance was observed with increasing viscosity, with the most striking change occurring between 50 and 100 Pas. Larger pores resulted in significantly reduced circularity and increased mean cement spreading distance whereas the effect of injection speed on the 2 indicators was not significant. CONCLUSION: Viscosity is the key factor for reducing the risk of PMMA cement leakage and it should be adapted to the degree of osteoporosis encountered in each patient. It may be advisable to opt for a higher starting viscosity but to inject the material at a faster rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25 m resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assays measuring platelet aggregation (thrombus formation) at arterial shear rate mostly use collagen as only platelet-adhesive surface. Here we report a multi-surface and multi-parameter flow assay to characterize thrombus formation in whole blood from healthy subjects and patients with platelet function deficiencies. A systematic comparison is made of 52 adhesive surfaces with components activating the main platelet-adhesive receptors, and of eight output parameters reflecting distinct stages of thrombus formation. Three types of thrombus formation can be identified with a predicted hierarchy of the following receptors: glycoprotein (GP)VI, C-type lectin-like receptor-2 (CLEC-2)>GPIb>α6β1, αIIbβ3>α2β1>CD36, α5β1, αvβ3. Application with patient blood reveals distinct abnormalities in thrombus formation in patients with severe combined immune deficiency, Glanzmann's thrombasthenia, Hermansky-Pudlak syndrome, May-Hegglin anomaly or grey platelet syndrome. We suggest this test may be useful for the diagnosis of patients with suspected bleeding disorders or a pro-thrombotic tendency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrated elliptic flow of charged particles produced in Pb+Pb collisions at √sNN = 2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v2, was measured in the pseudorapidity range |η| ≤ 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v2 integrated over pT, a 1 μb−1 data sample recorded without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v2 is compared to other measurements obtained with higher pT thresholds. The integrated elliptic flow is weakly decreasing with |η|. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed observations of interstellar neutral helium (ISN He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN He simulation model, presented in the companion paper by Sokol et al. (2015b), along with a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of similar to 6 degrees, with the other parameters varying accordingly along the parameter tube, and the minimum chi(2) value is larger than expected. We found, however, that the Mach number of the ISN He flow shows very little scatter and is thus very tightly constrained. It is in excellent agreement with the original analysis of ISN He observations from IBEX and recent reanalyses of observations from Ulysses. We identify a possible inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in the ISN He parameters obtained from the yearly subsets, and we suppose that another component may exist in the signal or a process that is not accounted for in the current physical model of ISN He in front of the heliosphere. From our analysis, the inflow velocity vector, temperature, and Mach number of the flow are equal to lambda(ISNHe) = 255 degrees.8 +/- 0 degrees.5, beta(ISNHe) = 5 degrees.16 +/- 0 degrees.10, T-ISNHe = 7440 +/- 260 K, nu(SNHe) = 25.8 +/- 0.4 km s(-1), and M-ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the parameter tube.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Interstellar Boundary Explorer (IBEX) has observed the interstellar neutral (ISN) gas flow over the past 6 yr during winter/spring when the Earth's motion opposes the ISN flow. Since IBEX observes the interstellar atom trajectories near their perihelion, we can use an analytical model based upon orbital mechanics to determine the interstellar parameters. Interstellar flow latitude, velocity, and temperature are coupled to the flow longitude and are restricted by the IBEX observations to a narrow tube in this parameter space. In our original analysis we found that pointing the spacecraft spin axis slightly out of the ecliptic plane significantly influences the ISN flow vector determination. Introducing the spacecraft spin axis tilt into the analytical model has shown that IBEX observations with various spin axis tilt orientations can substantially reduce the range of acceptable solutions to the ISN flow parameters as a function of flow longitude. The IBEX operations team pointed the IBEX spin axis almost exactly within the ecliptic plane during the 2012-2014 seasons, and about 5° below the ecliptic for half of the 2014 season. In its current implementation the analytical model describes the ISN flow most precisely for the spin axis orientation exactly in the ecliptic. This analysis refines the derived ISN flow parameters with a possible reconciliation between velocity vectors found with IBEX and Ulysses, resulting in a flow longitude lambda∞ = 74.°5 ± 1.°7 and latitude beta∞ = -5.°2 ± 0.°3, but at a substantially higher ISN temperature than previously reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Interstellar Boundary Explorer (IBEX) samples the interstellar neutral (ISN) gas flow of several species every year from December through late March when the Earth moves into the incoming flow. The first quantitative analyses of these data resulted in a narrow tube in four-dimensional interstellar parameter space, which couples speed, flow latitude, flow longitude, and temperature, and center values with approximately 3° larger longitude and 3 km s⁻¹ lower speed, but with temperatures similar to those obtained from observations by the Ulysses spacecraft. IBEX has now recorded six years of ISN flow observations, providing a large database over increasing solar activity and using varying viewing strategies. In this paper, we evaluate systematic effects that are important for the ISN flow vector and temperature determination. We find that all models in use return ISN parameters well within the observational uncertainties and that the derived ISN flow direction is resilient against uncertainties in the ionization rate. We establish observationally an effective IBEX-Lo pointing uncertainty of ±0°18 in spin angle and confirm an uncertainty of ±0°1 in longitude. We also show that the IBEX viewing strategy with different spin-axis orientations minimizes the impact of several systematic uncertainties, and thus improves the robustness of the measurement. The Helium Warm Breeze has likely contributed substantially to the somewhat different center values of the ISN flow vector. By separating the flow vector and temperature determination, we can mitigate these effects on the analysis, which returns an ISN flow vector very close to the Ulysses results, but with a substantially higher temperature. Due to coupling with the ISN flow speed along the ISN parameter tube, we provide the temperature Tvisn∞=8710+440/-680 K for Visn∞=26 km s⁻¹ for comparison, where most of the uncertainty is systematic and likely due to the presence of the Warm Breeze.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct Simulation Monte Carlo (DSMC) is a powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow. However, the investigation of the parameter space in simulations can be time consuming since 3D DSMC is computationally highly intensive. For the target of ESA's Rosetta mission, comet 67P/Churyumov-Gerasimenko, we have identified to what extent modification of several parameters influence the 3D flow and gas temperature fields and have attempted to establish the reliability of inferences about the initial conditions from in situ and remote sensing measurements. A large number of DSMC runs have been completed with varying input parameters. In this work, we present the simulation results and conclude on the sensitivity of solutions to certain inputs. It is found that among cases of water outgassing, the surface production rate distribution is the most influential variable to the flow field.