5 resultados para Torque converters

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite its importance, implant removal torque can be assessed at present only after implantation. This paper presents a new technique to help clinicians preoperatively evaluate implant stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond® Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch. These brackets were bonded on identical maxillary acrylic resin models with levelled and aligned teeth and each model was mounted on the orthodontic measurement and simulation system (OMSS). Ten specimens of 0.017 × 0.025 inch and ten 0.019 × 0.025 inch stainless steel archwires (ORMCO) were evaluated in the low- and high-torque 0.018 inch and 0.022 inch brackets, respectively. The wires were ligated with elastomerics into the brackets and each measurement was repeated once after religation. Two-way analysis of variance and t-test were conducted to compare the generated moments between wires at low- and high-torque brackets separately. The maximum moment generated by the 0.017 × 0.025 inch stainless steel archwire in the 0.018 inch brackets at +15 degrees ranged from 14.33 and 12.95 Nmm for the high- and low-torque brackets, respectively. The measured torque in the 0.022 inch brackets with the 0.019 × 0.025 inch stainless steel archwire was 9.32 and 6.48 Nmm, respectively. The recorded differences of maximum moments between the high- and low-torque series were statistically significant. High-torque brackets produced higher moments compared with low-torque brackets. Additionally, in both high- and low-torque configurations, the thicker 0.019 × 0.025 inch steel archwire in the 0.022 inch slot system generated lower moments in comparison with the 0.017 × 0.025 inch steel archwire in the 0.018 inch slot system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the effect of bracket type on the labiopalatal moments generated by lingual and conventional brackets. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), In-Ovation L lingual brackets (DENTSPLY GAC), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on identical maxillary acrylic resin models with levelled and aligned teeth. Each model was mounted on the orthodontic measurement and simulation system and 10 0.0175 × 0.0175 TMA wires were used for each bracket type. The wire was ligated with elastomerics into the Incognito, STb, and conventional brackets and each measurement was repeated once after religation. A 15 degrees buccal root torque (+15 degrees) and then a 15 degrees palatal root torque (-15 degrees) were gradually applied to the right central incisor bracket. After each activation, the bracket returned to its initial position and the moments in the sagittal plane were recorded during these rotations of the bracket. One-way analysis of variance with post hoc multiple comparisons (Tukey test at 0.05 error rate) was conducted to assess the effect on bracket type on the generated moments. The magnitude of maximum moment at +15 degrees ranged 8.8, 8.2, 7.1, and 5.8 Nmm for the Incognito, STb, conventional Gemini, and the In-Ovation L brackets, respectively; similar values were recorded at -15 degrees: 8.6, 8.1, 7.0, and 5.7 Nmm, respectively. The recorded differences of maximum moments were statistically significant, except between the Incognito and STb brackets. Additionally, the torque angles were evaluated at which the crown torque fell well below the minimum levels of 5.0 Nmm, as well as the moment/torque ratio at the last part of the activation/deactivation curve, between 10 and 15 degrees. The lowest torque expression was observed at the self-ligating lingual brackets, followed by the conventional brackets. The Incognito and STb lingual brackets generated the highest moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To compare the archwires inserted during the final stages of the orthodontic treatment with the generated moments at 0.018- and 0.022-inch brackets. MATERIALS AND METHODS The same bracket type, in terms of prescription, was evaluated in both slot dimensions. The brackets were bonded on two identical maxillary acrylic resin models, and each model was mounted on the orthodontic measurement and simulation system. Ten 0.017 × 0.025-inch TMA and ten 0.017 × 0.025-inch stainless steel archwires were evaluated in the 0.018-inch brackets. In the 0.022-inch brackets, ten 0.019 × 0.025-inch TMA and ten 0.019 × 0.025-inch stainless steel archwires were measured. A 15° buccal root torque (+15°) and then a 15° palatal root torque (-15°) were gradually applied to the right central incisor bracket, and the moments were recorded at these positions. A t-test was conducted to compare the generated moments between wires within the 0.018- and 0.022-inch bracket groups separately. RESULTS The 0.017 × 0.025-inch archwire in the 0.018-inch brackets generated mean moments of 9.25 Nmm and 14.2 Nmm for the TMA and stainless steel archwires, respectively. The measured moments in the 0.022-inch brackets with the 0.019 × 0.025-inch TMA and stainless steel archwires were 6.6 Nmm and 9.3 Nmm, respectively. CONCLUSION The 0.017 × 0.025-inch stainless steel and β-Ti archwires in the 0.018-inch slot generated higher moments than the 0.019 × 0.025-inch archwires because of lower torque play. This difference is exaggerated in steel archwires, in comparison with the β-Ti, because of differences in stiffness. The differences of maximum moments between the archwires of the same cross-section but different alloys were statistically significant at both slot dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To enhance the diminished screw purchase in cancellous, osteoporotic bone following the fixation of posterior pelvic ring injuries by iliosacral screws an increased bone-implant contact area using modificated screws, techniques or bone cement may become necessary. The aim of the study was to identify sites within the pathway of iliosacral screws requiring modifications of the local bone or the design of instrumentations placed at this site. MATERIALS AND METHODS The breakaway torque was measured mechanically at the iliosacral joint ("ISJ"), the sacral lateral mass ("SLM") and the center of the S1 ("CS1"), at a superior and an inferior site under fluoroscopic control on five human cadaveric specimens (3 female; mean age 87 years, range: 76-99) using the DensiProbe™Spine device. RESULTS The measured median (range) breakaway torque was 0.63 Nm (0.31-2.52) at the "iliosacral joint", 0.14 Nm (0.05-1.22) at the "sacral lateral mass", 0.57 Nm (0.05-1.42) at the "S1 center." The "sacral lateral mass" breakaway torque was lower than compared to that at the "iliosacral joint" (p < .001) or "S1 center" (p < .001). The median (range) breakaway torque measured at all superior measurement points was 0.52 Nm (0.10-2.52), and 0.48 Nm (0.05-1.18) at all inferior sites. The observed difference was statistically significant (p < .05). CONCLUSIONS The lateral mass of the sacrum provides the lowest bone quality for implant anchorage. Iliosacral screws should be placed as superior as safely possible, should bridge the iliosacral joint and may allow for cement application at the lateral mass of the sacrum through perforations.