16 resultados para Time lapse photography.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time-lapse pressure tomography inversion approach is applied to characterize the CO2 plume development in a virtual deep saline aquifer. Deep CO2 injection leads to flow properties of the mixed-phase, which vary depending on the CO2 saturation. Analogous to the crossed ray paths of a seismic tomographic experiment, pressure tomography creates streamline patterns by injecting brine prior to CO2 injection or by injecting small amounts of CO2 into the two-phase (brine and CO2) system at different depths. In a first step, the introduced pressure responses at observation locations are utilized for a computationally rapid and efficient eikonal equation based inversion to reconstruct the heterogeneity of the subsurface with diffusivity (D) tomograms. Information about the plume shape can be derived by comparing D-tomograms of the aquifer at different times. In a second step, the aquifer is subdivided into two zones of constant values of hydraulic conductivity (K) and specific storage (Ss) through a clustering approach. For the CO2 plume, mixed-phase K and Ss values are estimated by minimizing the difference between calculated and “true” pressure responses using a single-phase flow simulator to reduce the computing complexity. Finally, the estimated flow property is converted to gas saturation by a single-phase proxy, which represents an integrated value of the plume. This novel approach is tested first with a doublet well configuration, and it reveals a great potential of pressure tomography based concepts for characterizing and monitoring deep aquifers, as well as the evolution of a CO2 plume. Still, field-testing will be required for better assessing the applicability of this approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bite mark analysis offers the opportunity to identify the biter based on the individual characteristics of the dentitions. Normally, the main focus is on analysing bite mark injuries on human bodies, but also, bite marks in food may play an important role in the forensic investigation of a crime. This study presents a comparison of simulated bite marks in different kinds of food with the dentitions of the presumed biter. Bite marks were produced by six adults in slices of buttered bread, apples, different kinds of Swiss chocolate and Swiss cheese. The time-lapse influence of the bite mark in food, under room temperature conditions, was also examined. For the documentation of the bite marks and the dentitions of the biters, 3D optical surface scanning technology was used. The comparison was performed using two different software packages: the ATOS modelling and analysing software and the 3D studio max animation software. The ATOS software enables an automatic computation of the deviation between the two meshes. In the present study, the bite marks and the dentitions were compared, as well as the meshes of each bite mark which were recorded in the different stages of time lapse. In the 3D studio max software, the act of biting was animated to compare the dentitions with the bite mark. The examined food recorded the individual characteristics of the dentitions very well. In all cases, the biter could be identified, and the dentitions of the other presumed biters could be excluded. The influence of the time lapse on the food depends on the kind of food and is shown on the diagrams. However, the identification of the biter could still be performed after a period of time, based on the recorded individual characteristics of the dentitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, "outrunning" the host's immune response in demyelinating plaques, thus continuously eliciting new lesions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sound perception requires functional hair cell mechanotransduction (MET) machinery, including the MET channels and tip-link proteins. Prior work showed that uptake of ototoxic aminoglycosides (AG) into hair cells requires functional MET channels. In this study, we examined whether tip-link proteins, including Cadherin 23 (Cdh23), regulate AG entry into hair cells. Using time-lapse microscopy on cochlear explants, we found rapid uptake of gentamicin-conjugated Texas Red (GTTR) into hair cells from three-day-old Cdh23(+/+) and Cdh23(v2J/+) mice, but failed to detect GTTR uptake in Cdh23(v2J/v2J) hair cells. Pre-treatment of wildtype cochleae with the calcium chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) to disrupt tip-links also effectively reduced GTTR uptake into hair cells. Both Cdh23(v2J/v2J) and BAPTA-treated hair cells were protected from degeneration caused by gentamicin. Six hours after BAPTA treatment, GTTR uptake remained reduced in comparison to controls; by 24 hours, drug uptake was comparable between untreated and BAPTA-treated hair cells, which again became susceptible to cell death induced by gentamicin. Together, these results provide genetic and pharmacologic evidence that tip-links are required for AG uptake and toxicity in hair cells. Because tip-links can spontaneously regenerate, their temporary breakage offers a limited time window when hair cells are protected from AG toxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ex vivo porcine retina laser lesions applied with varying laser power (20 mW–2 W, 10 ms pulse, 196 lesions) are manually evaluated by microscopic and optical coherence tomography (OCT) visibility, as well as in histological sections immediately after the deposition of the laser energy. An optical coherence tomography system with 1.78 um axial resolution specifically developed to image thin retinal layers simultaneously to laser therapy is presented, and visibility thresholds of the laser lesions in OCT data and fundus imaging are compared. Optical coherence tomography scans are compared with histological sections to estimate the resolving power for small optical changes in the retinal layers, and real-time time-lapse scans during laser application are shown and analyzed quantitatively. Ultrahigh-resolution OCT inspection features a lesion visibility threshold 40–50 mW (17 reduction) lower than for visual inspection. With the new measurement system, 42 of the lesions that were invisible using state-of-the-art ophthalmoscopic methods could be detected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Patients with prior stroke within 3 months have been mostly excluded from randomized thrombolysis trials mainly because of the fear of an increased rate of symptomatic intracerebral hemorrhage (sICH). The aim of this study was to compare baseline characteristics and clinical outcome of thrombolyzed patients who had a previous stroke within the last 3 months with those not fulfilling this criterion (comparison group). METHODS In all, 1217 patients were included in our analysis (42.2% women, mean age 68.8 ± 14.4 years). RESULTS Patients with previous stroke within the last 3 months (17/1.4%) had more often a basilar artery occlusion (41.2% vs. 10.8%) and less frequently a modified Rankin scale (mRS) score 0-1 prior to index stroke (88.2% vs. 97.3%) and a higher mean time lapse from symptom onset to thrombolysis (321 min vs. 262 min) than those in the comparison group. Stroke severity was not different between the two groups. Rates of sICH were 11.8% vs. 6%. None of the sICHs and only one asymptomatic intracerebral hemorrhage occurred in the region of the former infarct. At 3 months, favorable outcome (mRS ≤ 2) in patients with previous stroke within 3 months was 29.4% (vs. 48.9%) and mortality 41.2% (vs. 22.7%). CONCLUSIONS In patients with prior stroke within the last 3 months, none of the sICHs and only one asymptomatic intracerebral hemorrhage occurred in the region of the former infarct. The high mortality was influenced by four patients, who died until discharge due to acute major index stroke. It is reasonable to include these patients in randomized clinical trials and registries to assess further their thrombolysis benefit-risk ratio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retinal laser photocoagulation is an established and successful treatment for a variety of retinal diseases. While being a valuable treatment modality, laser photocoagulation shows the drawback of employing high energy lasers which are capable of physically destroying the neural retina. For reliable therapy, it is therefore crucial to closely monitor the therapy effects caused in the retinal tissue. A depth resolved representation of optical tissue properties as provided by optical coherence tomography may provide valuable information about the treatment effects in the retinal layers if recorded simultaneously to laser coagulation. Therefore, in this work, the use of ultra-high resolution optical coherence tomography to represent tissue changes caused by conventional and selective retinal photocoagulation is investigated. Laser lesions were placed on porcine retina ex-vivo using a 577 nm laser as well as a pulsed laser at 527 nm built for selective treatment of the retinal pigment epithelium. Applied energies were varied to generate lesions best representing the span from under- to overtreatment. The lesions were examined using a custom-designed optical coherence tomography system with an axial resolution of 1.78 μm and 70 kHz Ascan rate. Optical coherence tomography scans included volume scans before and after irradiation, as well as time lapse scans (Mscan) of the lesions. Results show OCT lesion visibility thresholds to be below the thresholds of ophthalmoscopic inspection. With the ultra-high resolution OCT, 42% - 44% of ophthalmoscopically invisible lesions could be detected and lesions that were under- or overexposed could be distinguished using the OCT data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims: The aim of this study is to explore the migration (colonization of new areas) and subsequent population expansion (within an area) since 15 ka cal BP of Abies, Fagus, Picea, and Quercus into and through the Alps solely on the basis of high-quality pollen data. Methods: Chronologies of 101 pollen sequences are improved or created. Data from the area delimited by 45.5–48.1°N and 6–14°E are summarized in three ways: (1) in a selection of pollen-percentage threshold maps (thresholds 0.5%, 1%, 2%, 4%, 8%, 16%, and 32% of land pollen); (2) in graphic summaries of 250-year time slices and geographic segments (lengthwise and transverse in relation to the main axis of the Alps) as pollen-percentage curves, pollen-percentage difference curves, and pollen-percentage threshold ages cal BP graphed against both the length and the transverse Alpine axes; and (3) in tables showing statistical relationships of either pollen-percentage threshold ages cal BP or pollen expansion durations (=time lapse between different pollen-percentage threshold ages cal BP) with latitude, longitude, and elevation; to establish these relationships we used both simple linear regression and multiple linear regression after stepwise-forward selection. Results: The statistical results indicate that (a) the use of pollen-percentage thresholds between 0.5% and 8% yield mostly similar directions of tree migration, so the method is fairly robust, (b) Abies migrated northward, Fagus southward, Picea westward, and Quercus northward; more detail does not emerge due to an extreme scarcity of high-quality data especially along the southern foothills of the Alps and in the eastern Alps. This scarcity allows the reconstruction of one immigration route only of Abies into the southern Alps. The speed of population expansion (following arrival) of Abies increased and of Picea decreased during the Holocene, of Fagus it decreased especially during the later Holocene, and of Quercus it increased especially at the start of the Holocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Post-thrombotic syndrome (PTS) is a complication which occurs after deep vein thrombosis in spite of optimal anticoagulation. The term ’post-thrombotic syndrome’ summarizes all clinical symptoms and skin lesions developing in the aftermath of deep vein thrombosis. In order to prevent PTS various therapeutic options exist, the choice is depending on the time lapse since the event of thrombosis. At the acute phase of pelvic vein thrombosis catheter-directed lysis has proved to be an efficient therapy. Starting from the acute phase up to the chronic phase compression therapy should be administered. In the chronic phase clinically relevant improvement of PTS can be achieved by recanalisation of the venous outflow tract in the pelvic axis by endovascular stenting. Surgery or endovenous thermal ablation of the insufficient superficial venous system are further and supplementary sensible treatment options.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.