53 resultados para Tilted-time window model

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precise timing of events in the brain has consequences for intracellular processes, synaptic plasticity, integration and network behaviour. Pyramidal neurons, the most widespread excitatory neuron of the neocortex have multiple spike initiation zones, which interact via dendritic and somatic spikes actively propagating in all directions within the dendritic tree. For these neurons, therefore, both the location and timing of synaptic inputs are critical. The time window for which the backpropagating action potential can influence dendritic spike generation has been extensively studied in layer 5 neocortical pyramidal neurons of rat somatosensory cortex. Here, we re-examine this coincidence detection window for pyramidal cell types across the rat somatosensory cortex in layers 2/3, 5 and 6. We find that the time-window for optimal interaction is widest and shifted in layer 5 pyramidal neurons relative to cells in layers 6 and 2/3. Inputs arriving at the same time and locations will therefore differentially affect spike-timing dependent processes in the different classes of pyramidal neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose Intra-arterial treatment (IAT) is effective when performed within 6 h of symptom onset in selected stroke patients (‘T < 6H’). Its safety and efficacy is unclear when the patient has had symptoms for more than 6 h (‘T > 6H’) or for an unknown time (unclear-onset stroke, UOS), or woke up with a stroke (wake-up stroke, WUS). In this study we compared the safety of IAT in these four patient groups. Methods Eight-hundred and fifty-nine patients treated with IAT were enrolled. The main outcome parameters were clinical outcome [excellent: modified Rankin Scale (mRS) 0 or 1; or favorable: mRS 0–2] or mortality 3 months after treatment. Further outcome parameters were the rates of vessel recanalization, and cerebral and systemic hemorrhage. Results Six-hundred and fifty-four patients were treated before (T < 6H) and 205 after 6 h or an unknown time (128 T > 6H, 55 WUS and 22 UOS). NIHSS scores were higher in UOS patients than in T < 6H patients, vertebrobasilar occlusion was more common in T > 6H and UOS patients, and middle cerebral artery occlusions less common in T > 6H than in T < 6H patients. Other baseline characteristics were similar. There was no significant difference in clinical outcome and the rate of hemorrhage in multivariable regression analysis. Conclusions Clinical outcome of our four groups of patients was similar with no increase of hemorrhage rates in patients treated after awakening, after an unknown time or more than 6 h. Our preliminary data suggest that treatment of such patients may be performed safely. If confirmed in randomized trials, this would have major clinical implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful treatment of primary and secondary bone tumors in a huge number of cases remains one of the major unsolved challenges in modern medicine. Malignant primary bone tumor growth predominantly occurs in younger people, whereas older people predominantly suffer from secondary bone tumors since up to 85% of the most frequently occurring malignant solid tumors, such as lung, mammary, and prostate carcinomas, metastasize into the bone. It is well known that a tumor's course may be altered by its surrounding tissue. For this reason, reported here is the protocol for the surgical preparation of a cranial bone window in mice as well as the method to implant tumors in this bone window for further investigations of angiogenesis and other microcirculatory parameters in orthotopically growing primary or secondary bone tumors using intravital microscopy. Intravital microscopy represents an internationally accepted and sophisticated experimental method to study angiogenesis, microcirculation, and many other parameters in a wide variety of neoplastic and nonneoplastic tissues. Since most physiologic and pathophysiologic processes are active and dynamic events, one of the major strengths of chronic animal models using intravital microscopy is the possibility of monitoring the regions of interest in vivo continuously up to several weeks with high spatial and temporal resolution. In addition, after the termination of experiments, tissue samples can be excised easily and further examined by various in vitro methods such as histology, immunohistochemistry, and molecular biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basilar artery occlusion (BAO) is one of the most devastating forms of stroke and few patients have good outcomes without recanalization. Most centers apply recanalization therapies for BAO up to 12-24 hours after symptom onset, which is a substantially longer time window than the 4.5 hours used in anterior circulation stroke. In this speculative synthesis, we discuss recent advances in BAO treatment in order to understand why and under which circumstances longer symptom duration might not necrotize the brainstem and turn therapeutic attempts futile. We raise the possibility that distinct features of the posterior circulation, e.g., highly developed, persistent collateral arterial network, reverse filling of the distal basilar artery, and delicate plasma flow siding the clot, might sustain brittle patency of brainstem perforators in the face of stepwise growth of the thrombus. Meanwhile, the tissue clock characterizing the rapid necrosis of a typical anterior circulation penumbra will not start. During this perilous time period, recanalization at any point would salvage the brainstem from eventual necrosis caused by imminent reinforcement and further building up of the clot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpine snowbeds are habitats where the major limiting factors for plant growth are herbivory and a small time window for growth due to late snowmelt. Despite these limitations, snowbed vegetation usually forms a dense carpet of palatable plants due to favourable abiotic conditions for plant growth within the short growing season. These environmental characteristics make snowbeds particularly interesting to study the interplay of facilitation and competition. We hypothesised an interplay between resource competition and facilitation against herbivory. Further, we investigated whether these predicted neighbour effects were species-specific and/or dependent on ontogeny, and whether the balance of positive and negative plant–plant interactions shifted along a snowmelt gradient. We determined the neighbour effects by means of neighbour removal experiments along the snowmelt gradient, and linear mixed model analyses. The results showed that the effects of neighbour removal were weak but generally consistent among species and snowmelt dates, and depended on whether biomass production or survival was considered. Higher total biomass and increased fruiting in removal plots indicated that plants competed for nutrients, water, and light, thereby supporting the hypothesis of prevailing competition for resources in snowbeds. However, the presence of neighbours reduced herbivory and thereby also facilitated survival. For plant growth the facilitative effects against herbivores in snowbeds counterbalanced competition for resources, leading to a weak negative net effect. Overall the neighbour effects were not species-specific and did not change with snowmelt date. Our finding of counterbalancing effects of competition and facilitation within a plant community is of special theoretical value for species distribution models and can explain the success of models that give primary importance to abiotic factors and tend to overlook interrelations between biotic and abiotic effects on plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The original cefepime product was withdrawn from the Swiss market in January 2007 and replaced by a generic 10 months later. The goals of the study were to assess the impact of this cefepime shortage on the use and costs of alternative broad-spectrum antibiotics, on antibiotic policy, and on resistance of Pseudomonas aeruginosa toward carbapenems, ceftazidime, and piperacillin-tazobactam. A generalized regression-based interrupted time series model assessed how much the shortage changed the monthly use and costs of cefepime and of selected alternative broad-spectrum antibiotics (ceftazidime, imipenem-cilastatin, meropenem, piperacillin-tazobactam) in 15 Swiss acute care hospitals from January 2005 to December 2008. Resistance of P. aeruginosa was compared before and after the cefepime shortage. There was a statistically significant increase in the consumption of piperacillin-tazobactam in hospitals with definitive interruption of cefepime supply and of meropenem in hospitals with transient interruption of cefepime supply. Consumption of each alternative antibiotic tended to increase during the cefepime shortage and to decrease when the cefepime generic was released. These shifts were associated with significantly higher overall costs. There was no significant change in hospitals with uninterrupted cefepime supply. The alternative antibiotics for which an increase in consumption showed the strongest association with a progression of resistance were the carbapenems. The use of alternative antibiotics after cefepime withdrawal was associated with a significant increase in piperacillin-tazobactam and meropenem use and in overall costs and with a decrease in susceptibility of P. aeruginosa in hospitals. This warrants caution with regard to shortages and withdrawals of antibiotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain activity relies on transient, fluctuating interactions between segregated neuronal populations. Synchronization within a single and between distributed neuronal clusters reflects the dynamics of these cooperative patterns. Thus absence epilepsy can be used as a model for integrated, large-scale investigation of the emergence of pathological collective dynamics in the brain. Indeed, spike-wave discharges (SWD) of an absence seizure are thought to reflect abnormal cortical hypersynchronization. In this paper, we address two questions: how and where do SWD arise in the human brain? Therefore, we explored the spatio-temporal dynamics of interactions within and between widely distributed cortical sites using magneto-encephalographic recordings of spontaneous absence seizures. We then extracted, from their time-frequency analysis, local synchronization of cortical sources and long-range synchronization linking distant sites. Our analyses revealed a reproducible sequence of 1) long-range desynchronization, 2) increased local synchronization and 3) increased long-range synchronization. Although both local and long-range synchronization displayed different spatio-temporal profiles, their cortical projection within an initiation time window overlap and reveal a multifocal fronto-central network. These observations contradict the classical view of sudden generalized synchronous activities in absence epilepsy. Furthermore, they suggest that brain states transition may rely on multi-scale processes involving both local and distant interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Inverse relationship between onset-to-door time (ODT) and door-to-needle time (DNT) in stroke thrombolysis was reported from various registries. We analyzed this relationship and other determinants of DNT in dedicated stroke centers. METHODS Prospectively collected data of consecutive ischemic stroke patients from 10 centers who received IV thrombolysis within 4.5 hours from symptom onset were merged (n=7106). DNT was analyzed as a function of demographic and prehospital variables using regression analyses, and change over time was considered. RESULTS In 6348 eligible patients with known treatment delays, median DNT was 42 minutes and kept decreasing steeply every year (P<0.001). Median DNT of 55 minutes was observed in patients with ODT ≤30 minutes, whereas it declined for patients presenting within the last 30 minutes of the 3-hour time window (median, 33 minutes) and of the 4.5-hour time window (20 minutes). For ODT within the first 30 minutes of the extended time window (181-210 minutes), DNT increased to 42 minutes. DNT was stable for ODT for 30 to 150 minutes (40-45 minutes). We found a weak inverse overall correlation between ODT and DNT (R(2)=-0.12; P<0.001), but it was strong in patients treated between 3 and 4.5 hours (R(2)=-0.75; P<0.001). ODT was independently inversely associated with DNT (P<0.001) in regression analysis. Octogenarians and women tended to have longer DNT. CONCLUSIONS DNT was decreasing steeply over the last years in dedicated stroke centers; however, significant oscillations of in-hospital treatment delays occurred at both ends of the time window. This suggests that further improvements can be achieved, particularly in the elderly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International air travel has already spread Ebola virus disease (EVD) to major cities as part of the unprecedented epidemic that started in Guinea in December 2013. An infected airline passenger arrived in Nigeria on July 20, 2014 and caused an outbreak in Lagos and then Port Harcourt. After a total of 20 reported cases, including 8 deaths, Nigeria was declared EVD free on October 20, 2014. We quantified the impact of early control measures in preventing further spread of EVD in Nigeria and calculated the risk that a single undetected case will cause a new outbreak. We fitted an EVD transmission model to data from the outbreak in Nigeria and estimated the reproduction number of the index case at 9.0 (95% confidence interval [CI]: 5.2-15.6). We also found that the net reproduction number fell below unity 15 days (95% CI: 11-21 days) after the arrival of the index case. Hence, our study illustrates the time window for successful containment of EVD outbreaks caused by infected air travelers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear- and unimodal-based inference models for mean summer temperatures (partial least squares, weighted averaging, and weighted averaging partial least squares models) were applied to a high-resolution pollen and cladoceran stratigraphy from Gerzensee, Switzerland. The time-window of investigation included the Allerød, the Younger Dryas, and the Preboreal. Characteristic major and minor oscillations in the oxygen-isotope stratigraphy, such as the Gerzensee oscillation, the onset and end of the Younger Dryas stadial, and the Preboreal oscillation, were identified by isotope analysis of bulk-sediment carbonates of the same core and were used as independent indicators for hemispheric or global scale climatic change. In general, the pollen-inferred mean summer temperature reconstruction using all three inference models follows the oxygen-isotope curve more closely than the cladoceran curve. The cladoceran-inferred reconstruction suggests generally warmer summers than the pollen-based reconstructions, which may be an effect of terrestrial vegetation not being in equilibrium with climate due to migrational lags during the Late Glacial and early Holocene. Allerød summer temperatures range between 11 and 12°C based on pollen, whereas the cladoceran-inferred temperatures lie between 11 and 13°C. Pollen and cladocera-inferred reconstructions both suggest a drop to 9–10°C at the beginning of the Younger Dryas. Although the Allerød–Younger Dryas transition lasted 150–160 years in the oxygen-isotope stratigraphy, the pollen-inferred cooling took 180–190 years and the cladoceran-inferred cooling lasted 250–260 years. The pollen-inferred summer temperature rise to 11.5–12°C at the transition from the Younger Dryas to the Preboreal preceded the oxygen-isotope signal by several decades, whereas the cladoceran-inferred warming lagged. Major discrepancies between the pollen- and cladoceran-inference models are observed for the Preboreal, where the cladoceran-inference model suggests mean summer temperatures of up to 14–15°C. Both pollen- and cladoceran-inferred reconstructions suggest a cooling that may be related to the Gerzensee oscillation, but there is no evidence for a cooling synchronous with the Preboreal oscillation as recorded in the oxygen-isotope record. For the Gerzensee oscillation the inferred cooling was ca. 1 and 0.5°C based on pollen and cladocera, respectively, which lies well within the inherent prediction errors of the inference models.