13 resultados para Ti3Si phase stability
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) Å, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to a high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch–Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0(b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0(c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.
Resumo:
Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.
Resumo:
Tricyclo-DNA (tcDNA) is a sugar- and backbone-modified analogue of DNA that is currently tested as antisense oligonucleotide for the treatment of Duchenne muscular dystrophy. The name tricyclo-DNA is derived from the modified sugar-moiety: the deoxyribose is extended to a three-membered ring system. This modification is designed to limit the flexibility of the structure, thus giving rise to entropically stabilized hybrid duplexes formed between tcDNA and complementary DNA or RNA oligonucleotides. While the structural modifications increase the biostability of the therapeutic agent, they also render the oligonucleotide inaccessible to enzyme-based sequencing methods. Tandem mass spectrometry constitutes an alternative sequencing technique for partially and fully modified oligonucleotides. For reliable sequencing, the fragmentation mechanism of the structure in question must be understood. Therefore, the presented work evaluates the effect of the modified sugar-moiety on the gas-phase dissociation of single stranded tcDNA. Moreover, our experiments reflect the exceptional gas-phase stability of hybrid duplexes that is most noticeable in the formation of truncated duplex ions upon collision-induced dissociation. The stability of the duplex arises from the modified sugar-moiety, as the rigid structure of the tcDNA single strand minimizes the change of the entropy for the annealing. Moreover, the tc-modification gives rise to extended conformations of the nucleic acids in the gas-phase, which was studied by ion mobility spectrometry-mass spectrometry.
Resumo:
The Sm, Eu, and Yb tri- and dichlorides were investigated by Knudsen effusion mass spectrometry. It was found out by the analysis of mass spectra and ionization efficiency curves that the vapor composition is complex due to the partial high temperature decomposition/disproportionation of the samples. Up to five vapor species were identified for both LnCl3 (LnCl3, LnCl2, Ln2Cl4, Ln2Cl5, and Ln2Cl6) and LnCl2 (LnCl3, LnCl2, LnCl, Ln, and Ln2Cl4). The quantitative evaluation of vapor composition was made. It indicates that the disproportionation of SmCl2 and EuCl2 is negligible in the temperature range studied whereas that of YbCl2 and the decomposition of SmCl3 and YbCl3 cannot be neglected.
Resumo:
On Swiss rabbit breeding farms, group-housed does are usually kept singly for 12 days around parturition to avoid pseudograviclity, double litters and deleterious fighting for nests. After this isolation phase there is usually an integration of new group members. Here we studied whether keeping the group composition stable would reduce agonistic interactions, stress levels and injuries when regrouping after the isolation phase. Does were kept in 12 pens containing 8 rabbits each. In two trials, with a total of 24 groups, the group composition before and after the 12 days isolation period remained the same (treatment: stable, S) in 12 groups. In the other 12 groups two or three does were replaced after the isolation phase by unfamiliar does (treatment: mixed, M). Does of S-groups had been housed together for one reproduction cycle. One day before and on days 2, 4 and 6 after regrouping, data on lesions, stress levels (faecal corticosterone metabolites, FCM) and agonistic interactions were collected and statistically analysed using mixed effects models. Lesion scores and the frequency of agonistic interactions were highest on day 2 after regrouping and thereafter decrease in both groups. There was a trend towards more lesions in M-groups compared to S-groups. After regrouping FCM levels were increased in M-groups, but not in S-groups. Furthermore, there was a significant interaction of treatment and experimental day on agonistic interactions. Thus, the frequency of biting and boxing increased more in M-groups than in S-groups. These findings indicate that group stability had an effect on agonistic interactions, stress and lesions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Synthetic modified oligonucleotides are of interest for diagnostic and therapeutic applications, as their biological stability, pairing selectivity, and binding strength can be considerably increased by the incorporation of unnatural structural elements. Homo-DNA is an oligonucleotide homologue based on dideoxy-hexopyranosyl sugar moieties, which follows the Watson-Crick A-T and G-C base pairing system, but does not hybridize with complementary natural DNA and RNA. Homo-DNA has found application as a bioorthogonal element in templated chemistry applications. The gas-phase dissociation of homo-DNA has been investigated by ESI-MS/MS and MALDI-MS/MS, and mechanistic aspects of its gas-phase dissociation are discussed. Experiments revealed a charge state dependent preference for the loss of nucleobases, which are released either as neutrals or as anions. In contrast to DNA, nucleobase loss from homo-DNA was found to be decoupled from backbone cleavage, thus resulting in stable products. This renders an additional stage of ion activation necessary in order to generate sequence-defining fragment ions. Upon MS(3) of the primary base-loss ion, homo-DNA was found to exhibit unspecific backbone dissociation resulting in a balanced distribution of all fragment ion series.
Resumo:
Objective The effects of 4-aminopyridine (4-AP) on downbeat nystagmus (DBN) were analysed in terms of slow-phase velocity (SPV), stance, locomotion, visual acuity (VA), patient satisfaction and side effects using standardised questionnaires. Methods Twenty-seven patients with DBN received 5 mg 4-AP four times a day or placebo for 3 days and 10 mg 4-AP four times a day or placebo for 4 days. Recordings were done before the first, 60 min after the first and 60 min after the last drug administration. Results SPV decreased from 2.42 deg/s at baseline to 1.38 deg/s with 5 mg 4-AP and to 2.03 deg/s with 10 mg 4-AP (p<0.05; post hoc: 5 mg 4-AP: p=0.04). The rate of responders was 57%. Increasing age correlated with a 4-AP-related decrease in SPV (p<0.05). Patients improved in the ‘get-up-and-go test’ with 4-AP (p<0.001; post hoc: 5 mg: p=0.025; 10 mg: p<0.001). Tandem-walk time (both p<0.01) and tandem-walk error (4-AP: p=0.054; placebo: p=0.059) improved under 4-AP and placebo. Posturography showed that some patients improved with the 5 mg 4-AP dose, particularly older patients. Near VA increased from 0.59 at baseline to 0.66 with 5 mg 4-AP (p<0.05). Patients with idiopathic DBN had the greatest benefit from 4-AP. There were no differences between 4-AP and placebo regarding patient satisfaction and side effects. Conclusions 4-AP reduced SPV of DBN, improved near VA and some locomotor parameters. 4-AP is a useful medication for DBN syndrome, older patients in particular benefit from the effects of 5 mg 4-AP on nystagmus and postural stability.
Resumo:
We investigate the stability of super-Earth atmospheres around M stars using a seven-parameter, analytical framework. We construct stability diagrams in the parameter space of exoplanetary radius versus semimajor axis and elucidate the regions in which the atmospheres are stable against the condensation of their major constituents, out of the gas phase, on their permanent nightside hemispheres. We find that super-Earth atmospheres that are nitrogen-dominated (Earth-like) occupy a smaller region of allowed parameter space, compared to hydrogen-dominated atmospheres, because of the dual effects of diminished advection and enhanced radiative cooling. Furthermore, some super-Earths which reside within the habitable zones of M stars may not possess stable atmospheres, depending on the mean molecular weight and infrared photospheric pressure of their atmospheres. We apply our stability diagrams to GJ 436b and GJ 1214b, and demonstrate that atmospheric compositions with high mean molecular weights are disfavored if these exoplanets possess solid surfaces and shallow atmospheres. Finally, we construct stability diagrams tailored to the Kepler data set, for G and K stars, and predict that about half of the exoplanet candidates are expected to harbor stable atmospheres if Earth-like conditions are assumed. We include 55 Cancri e and CoRoT-7b in our stability diagram for G stars
Resumo:
The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%–25%; 5%–95% confidence limits) for RCP2.6, 26% (23%–30%) for RCP4.5, 29% (23%–35%) for RCP6.0 and 40% (36%–44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30°–32°S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming.
Resumo:
Changes in (1→3,1→4)-β-D-glucan endohydrolase (EC 3.2.1.73) protein levels were investigated in segments from second leaves of wheat (Triticum aestivum L.). The abundance of the enzyme protein markedly increased when leaf segments were incubated in the dark whereas the enzyme rapidly disappeared when dark-incubated segments were illuminated or fed with sucrose. Addition of cycloheximide (CHI) to the incubation medium led to the disappearance of previously synthesized (1→3,1→4)-β-glucanase and suppressed the dark-induced accumulation indicating that the enzyme was rather unstable. The degradation of (1→3,1→4)-β-glucanase was analyzed without the interference of de-novo synthesis in intercellular washing fluid (IWF). The loss of the enzyme protein during incubation of IWF (containing naturally present peptide hydrolases) indicated that the stability increased from pH 4 to pH 7 and that an increase in the temperature from 25 to 35 °C considerably decreased the stability. Chelating divalent cations in the IWF with o-phenanthroline also resulted in a lowered stability of the enzyme. A strong temperature effect in the range from 25 to 35 °C was also observed in wheat leaf segments. Diurnal changes in (1→3,1→4)-β-glucanase activity were followed in intact second leaves from young wheat plants. At the end of the dark period, the activity was high but constantly decreased during the light phase and remained low if the light period was extended. Activity returned to the initial level during a 10-h dark phase. During a diurnal cycle, changes in (1→3,1→4)-β-glucanase activity were associated with reciprocal changes in soluble carbohydrates. The results suggest that the synthesis and the proteolytic degradation of an apoplastic enzyme may rapidly respond to changing environmental conditions.
Resumo:
Double cyclization of short linear peptides obtained by solid phase peptide synthesis was used to prepare bridged bicyclic peptides (BBPs) corresponding to the topology of bridged bicyclic alkanes such as norbornane. Diastereomeric norbornapeptides were investigated by 1H-NMR, X-ray crystallography and CD spectroscopy and found to represent rigid globular scaffolds stabilized by intramolecular backbone hydrogen bonds with scaffold geometries determined by the chirality of amino acid residues and sharing structural features of β-turns and α-helices. Proteome profiling by capture compound mass spectrometry (CCMS) led to the discovery of the norbornapeptide 27c binding selectively to calmodulin as an example of a BBP protein binder. This and other BBPs showed high stability towards proteolytic degradation in serum.
Resumo:
Antisense oligonucleotides are medical agents for the treatment of genetic diseases that are designed to interact specifically with mRNA. This interaction either induces enzymatic degradation of the targeted RNA or modifies processing pathways, e.g. by inducing alternative splicing of the pre-mRNA. The latter mechanism applies to the treatment of Duchenne muscular dystrophy with a sugar-modified DNA analogue called tricyclo-DNA (tcDNA). In tcDNA the ribose sugar-moiety is extended to a three-membered ring system, which augments the binding affinity and the selectivity of the antisense oligonucleotide for its target. The advent of chemically modified nucleic acids for antisense therapy presents a challenge to diagnostic tools, which must be able to cope with a variety of structural analogues. Mass spectrometry meets this demand for non-enzyme based sequencing methods ideally, because the technique is largely unaffected by structural modifications of the analyte. Sequence coverage of a fully modified tcDNA 15mer can be obtained in a single tandem mass spectrometric experiment. Beyond sequencing experiments, tandem mass spectrometry was applied to elucidate the gas-phase structure and stability of tcDNA:DNA and tcDNA:RNA hybrid duplexes. Most remarkable is the formation of truncated duplexes upon collision-induced dissociation of these structures. Our data suggest that the cleavage site within the duplex is directed by the modified sugar-moiety. Moreover, the formation of truncated duplexes manifests the exceptional stability of the hybrid duplexes in the gas-phase. This stability arises from the modified sugar-moiety, which locks the tcDNA single strand into a conformation that is similar to RNA in A-form duplexes. The conformational particularity of tcDNA in the gas-phase was confirmed by ion mobility-mass spectrometry experiments on tcDNA, DNA, and RNA.