3 resultados para Ti : sapphire laser
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The laser device DIAGNOdent developed for the detection of occlusal caries has limited value on approximal surfaces. The aim of this study was to develop and to test a new laser fluorescence (LF) device for the detection of approximal caries. Light with a wavelength of 655 nm was transported to the approximal surface using two different sapphire fibre tips. Seventy-five teeth were selected from a pool of extracted permanent human molars, frozen at -20 degrees C until use. Before being measured, they were defrosted, cleaned and calculus was removed with a scaler. The molars were set in blocks simulating the contact area of adults. Bitewing radiographs were obtained using Kodak Insight films. After two independent assessments with the new LF device, the teeth were histologically prepared, and assessed for caries extension. Using the laser, specificity values for D1 threshold (outer half of enamel), D2 threshold (inner half of enamel), D3 threshold (dentine) ranged between 0.81 and 0.93, sensitivity between 0.84 and 0.92 with no difference between the two tips. Bitewing radiography showed an inferior performance compared to LF (p<0.05). Intraex aminer reproducibility was high (kappa>.74). The new LF system might be a useful additional tool in detecting approximal caries. Because of its good reproducibility, it could be used to monitor caries regression or progression on approximal surfaces.
Resumo:
The new device DIAGNOdent pen based on red laser light induced fluorescence was introduced for the detection of approximal and occlusal caries. The aim of this study was to test its performance on occlusal surfaces. The new device comes with two different sapphire fibre tips: a cylindrical tip and a conical tip. The two new sapphire fibre tips were used and compared with the tip currently available with DIAGNOdent (DD). METHODS: The teeth were selected from a pool of extracted permanent human molars, which were stored frozen at -20 degrees C, until use. Prior to being measured the teeth were defrosted and cleaned. One hundred and nineteen teeth were selected and measured with the old tip and with the two new tips of the new device by two independent assessments. The teeth were histologically prepared and assessed for caries extension. RESULTS: Specificity values for D(1), D(2) and D(3) ranged between 0.69 and 0.89, sensitivity between 0.78 and 0.96. There were no statistically significant differences obtained between the two tips of the new and the one tip of the old device (p>0.05). Intra-examiner reliability with kappa values of >0.83 was high. CONCLUSIONS: In this study, the new laser fluorescence device performed on occlusal surfaces as well as the available device.
Resumo:
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium in- quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 lg g-1),Al (154 ± 15 lg g-1), Li (30 ± 2 lg g-1), Fe (2.2 ± 0.3 lg g-1), Mn (0.34 ± 0.04 lg g-1), Ge (1.7 ± 0.2 lg g-1) and Ga (0.020 ± 0.002 lg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. oncentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.