64 resultados para Threshold Schemes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Degeneration of the intervertebral disc, sometimes associated with low back pain and abnormal spinal motions, represents a major health issue with high costs. A non-invasive degeneration assessment via qualitative or quantitative MRI (magnetic resonance imaging) is possible, yet, no relation between mechanical properties and T2 maps of the intervertebral disc (IVD) has been considered, albeit T2 relaxation time values quantify the degree of degeneration. Therefore, MRI scans and mechanical tests were performed on 14 human lumbar intervertebral segments freed from posterior elements and all soft tissues excluding the IVD. Degeneration was evaluated in each specimen using morphological criteria, qualitative T2 weighted images and quantitative axial T2 map data and stiffness was calculated from the load-deflection curves of in vitro compression, torsion, lateral bending and flexion/extension tests. In addition to mean T2, the OTSU threshold of T2 (TOTSU), a robust and automatic histogram-based method that computes the optimal threshold maximizing the distinction of two classes of values, was calculated for anterior, posterior, left and right regions of each annulus fibrosus (AF). While mean T2 and degeneration schemes were not related to the IVDs' mechanical properties, TOTSU computed in the posterior AF correlated significantly with those classifications as well as with all stiffness values. TOTSU should therefore be included in future degeneration grading schemes.
Resumo:
OBJECTIVES: Hypoglycaemia (glucose <2.2 mmol/l) is a defining feature of severe malaria, but the significance of other levels of blood glucose has not previously been studied in children with severe malaria. METHODS: A prospective study of 437 consecutive children with presumed severe malaria was conducted in Mali. We defined hypoglycaemia as <2.2 mmol/l, low glycaemia as 2.2-4.4 mmol/l and hyperglycaemia as >8.3 mmol/l. Associations between glycaemia and case fatality were analysed for 418 children using logistic regression models and a receiver operator curve (ROC). RESULTS: There was a significant difference between blood glucose levels in children who died (median 4.6 mmol/l) and survivors (median 7.6 mmol/l, P < 0.001). Case fatality declined from 61.5% of the hypoglycaemic children to 46.2% of those with low glycaemia, 13.4% of those with normal glycaemia and 7.6% of those with hyperglycaemia (P < 0.001). Logistic regression showed an adjusted odds ratio (AOR) of 0.75 (0.64-0.88) for case fatality per 1 mmol/l increase in baseline blood glucose. Compared to a normal blood glucose, hypoglycaemia and low glycaemia both significantly increased the odds of death (AOR 11.87, 2.10-67.00; and 5.21, 1.86-14.63, respectively), whereas hyperglycaemia reduced the odds of death (AOR 0.34, 0.13-0.91). The ROC [area under the curve at 0.753 (95% CI 0.684-0.820)] indicated that glycaemia had a moderate predictive value for death and identified an optimal threshold at glycaemia <6.1 mmol/l, (sensitivity 64.5% and specificity 75.1%). CONCLUSIONS: If there is a threshold of blood glucose which defines a worse prognosis, it is at a higher level than the current definition of 2.2 mmol/l.
Resumo:
To determine the potential benefit of combined respiratory-cardiac triggering for diffusion-weighted imaging (DWI) of kidneys compared to respiratory triggering alone (RT).
Resumo:
Mitochondrial tRNA(Leu(UUR)) mutation m.3302A > G is associated with respiratory chain complex I deficiency and has been described as a rare cause of mostly adult-onset slowly progressive myopathy. Five families with 11 patients have been described so far; 5 of them died young due to cardiorespiratory failure. Here, we report on a segregation study in a family with an index patient who already presented at the age of 18 months with proximal muscular hypotonia, abnormal fatigability, and lactic acidosis. This early-onset myopathy was rapidly progressive. At 8 years, the patient is wheel-chair bound, requires nocturnal assisted ventilation, and suffers from recurrent respiratory infections. Severe complex I deficiency and nearly homoplasmy for m.3302A > G were found in muscle. We collected blood, hair, buccal swabs and muscle biopsies from asymptomatic adults in this pedigree and determined heteroplasmy levels in these tissues as well as OXPHOS activities in muscle. All participating asymptomatic adults had normal OXPHOS activities. In contrast to earlier reports, we found surprisingly little variation of heteroplasmy levels in different tissues of the same individual. Up to 45% mutation load in muscle and up to 38% mutation load in other tissues were found in non-affected adults. The phenotypic spectrum of tRNA(Leu(UUR)) m.3302A > G mutation seems to be wider than previously described. A threshold of more than 45% heteroplasmy in muscle seems to be necessary to alter complex I activity leading to clinical manifestation. The presented data may be helpful for prognostic considerations and counseling in affected families.
Resumo:
This study investigated the excitability and accommodative properties of low-threshold human motor axons to test whether these motor axons have greater expression of the persistent Na(+) conductance, I(NaP). Computer-controlled threshold tracking was used to study 22 single motor units and the data were compared with compound motor potentials of various amplitudes recorded in the same experimental session. Detailed comparisons were made between the single units and compound potentials that were 40% or 5% of maximal amplitude, the former because this is the compound potential size used in most threshold tracking studies of axonal excitability, the latter because this is the compound potential most likely to be composed entirely of motor axons with low thresholds to electrical recruitment. Measurements were made of the strength-duration relationship, threshold electrotonus, current-voltage relationship, recovery cycle and latent addition. The findings did not support a difference in I(NaP). Instead they pointed to greater activity of the hyperpolarization-activated inwardly rectifying current (I(h)) as the basis for low threshold to electrical recruitment in human motor axons. Computer modelling confirmed this finding, with a doubling of the hyperpolarization-activated conductance proving the best single parameter adjustment to fit the experimental data. We suggest that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel(s) expressed on human motor axons may be active at rest and contribute to resting membrane potential.
Resumo:
Various factors, including maturity, have been shown to influence peripheral nerve excitability measures, but little is known about differences in these properties between axons with different stimulation thresholds. Multiple nerve excitability tests were performed on the caudal motor axons of immature and mature female rats, recording from tail muscles at three target compound muscle action potential (CMAP) levels: 10%, 40% ("standard" level), and 60% of the maximum CMAP amplitude. Compared to lower target levels, axons at high target levels have the following characteristics: lower strength-duration time constant, less threshold reduction during depolarizing currents and greater threshold increase to hyperpolarizing currents, most notably to long hyperpolarizing currents in mature rats. Threshold-dependent effects on peripheral nerve excitability properties depend on the maturation stage, especially inward rectification (Ih), which becomes inversely related to threshold level. Performing nerve excitability tests at different target levels is useful in understanding the variation in membrane properties between different axons within a nerve. Because of the threshold effects on nerve excitability and the possibility of increased variability between axons and altered electric recruitment order in disease conditions, excitability parameters measured only at the "standard" target level should be interpreted with caution, especially the responses to hyperpolarizing currents.
Resumo:
Self-monitoring of blood glucose (SMBG) in type 2 diabetes has increasingly been shown to display beneficial effects on glycemic control. SMBG is not only associated with a reduction of hemoglobin A1c but has also been demonstrated to increase patients' awareness of the disease. SMBG has also the potential to visualize and predict hypoglycemic episodes. International guidelines by the International Diabetes Federation, the European Society of Cardiology, and the European Association for the Study of Diabetes and also the International Society for Pediatric and Adolescent Diabetes emphasize that SMBG is an integral part of self-management. More recently, two European consensus documents have been published to give recommendations for frequency and timing of SMBG also for various clinical scenarios. Recently, a European expert panel was held to further facilitate and enhance standardized approaches to SMBG. The aim was to present simple, clinically meaningful, and standardized SMBG strategies for type 2 diabetes. The panel recommended a less intensive and an intensive scheme for SMBG across the type 2 diabetes continuum. The length and frequency of SMBG performance depend on the clinical circumstances and the quality of glycemic control. The expert panel also recommended further evaluation of various schemes for SMBG in type 2 diabetes in clinical studies.
Resumo:
Data gathering, either for event recognition or for monitoring applications is the primary intention for sensor network deployments. In many cases, data is acquired periodically and autonomously, and simply logged onto secondary storage (e.g. flash memory) either for delayed offline analysis or for on demand burst transfer. Moreover, operational data such as connectivity information, node and network state is typically kept as well. Naturally, measurement and/or connectivity logging comes at a cost. Space for doing so is limited. Finding a good representative model for the data and providing clever coding of information, thus data compression, may be a means to use the available space to its best. In this paper, we explore the design space for data compression for wireless sensor and mesh networks by profiling common, publicly available algorithms. Several goals such as a low overhead in terms of utilized memory and compression time as well as a decent compression ratio have to be well balanced in order to find a simple, yet effective compression scheme.